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1. Introduction 

We describe the development of GEOM, a geometry theorem-prover, with the 
objective of achieving a better understanding of the capabilities of  Prolog as a tool for 
automated reasoning in this 'classical' AI domain. 

The paper is divided into 8 sections which cover three main aspects: the definition 
of the problem domain, the points of friction found, the directions suggested for 
further research, and conclusions. We add a comparative survey of some previous 
work in geometry theorem proving. 

We begin with the motivation inherent to our work. For each section, an intro- 
duction covers briefly the topics discussed. Section 3 presents the problem collection 
and the representation chosen for the basic geometric primitives. Section 4 details the 
program's knowledge. Section 5 discusses difficulties encountered and how they were 
coped with. Section 6 introduces the advantages of the separation between logic and 
control and how this distinction was partly implemented in GEOM. Section 7 
contains directions of research suggested for further work, such as the improvement 
of the programming language itself. Section 8 puts forth our conclusions. 

GEOM is a Prolog program that generates proofs for problems in high school plane 
geometry. It is divided into modules which cover geometric and arithmetic know- 
ledge, the printing and assertion facilities and the utilities.* 

* A hsting of the program GEOM written in the Edinburgh standard notaUon will be sent upon request. 
However, along this paper we used the old syntaxe available with the Prolog written in FORTRAN IV 
developed at Marseille, where literals have ' + '  or ' - '  according to whether they are positive or negative. 
Infix operators are used, and variables are preceded by ". '  
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This organization allows easy reading, understanding and fast updating of the 
program. A user presents problems to GEOM by declaring the hypotheses, the 
optional diagram and the goal (see Appendix 1). GEOM starts from the goal, 
top-down and with a depth-first strategy, outputing its deductions and reasons for 
each step of the proof (see Appendix 2). 

This work extends previous work done by Gelernter [8, 9, 10], Rochester [8], 
Gilmore [l 1], Reiter [15], Goldstein [12], Nevins [13], and Welham [19]. Recently other 
work has been presented by Anderson [1, 2], Fearnley-Sandor [7], and Wen-Tsun 
[20, 21]. Basically, the following research question were examined: 

(1) the mixture of chaining backward (top-down) and forward (bottom-up); 
(2) the separation between logic and control; 
(3) the introduction of new points; 
(4) the introduction of line segments (constructions); 
(5) the uses of a diagram; 
(6) the use of geometrical symmetry; 
(7) the implicit use of transitivity; 
(8) the way of handling congruence relations (equivalence classes); 
(9) the use of a language based on predicate calculus in a large and complex domain; 

and, 
(10) non-proved goals in the context of constructions made. 

2. Motivation 

This research was mainly oriented to achieve a better understanding of the capabilities 
of Prolog, a programming language based on first order logic or predicate calculus, 
as a tool for automated reasoning. To do so so we chose a specific domain, elementary 
plane geometry, and we analysed how Prolog could cope with the construction of a 
geometry theorem-prover. Some deficiencies and limitations were found, suggesting 
improvements of Prolog. 

Geometry theorem-provers have been attempted at times, as an exploration field 
during the first 16 years of Artificial Intelligence. Later on [1, 2], proving a theorem 
in geometry was used also to develop intelligent tutoring systems, capable to com- 
municate to the student the logical structure of a proof and the structure of the 
problem solving process by which a proof is generated. 

The difficulties which prevent the development and more general use of a geometry 
theorem-prover were stressed in a report on previous work by Coelho [3]. In 
Appendix 3 we present a practical guide on the analysis of early studies. 
Some general questions were put forward, from the start, such as: 

(1) to be attentive to the limitations and possible developments of Prolog while using 
it for writing a geometry theorem-prover; 

(2) what geometric knowledge was needed for a collection of problems selected from 
previous work on geometry theorem-provers; 
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(3) how to have in a program a useable map of geometric knowledge. 

Later on, other questions were added: 
(4) how to formulate the problem: the choice of representation and canonical 

naming; 
(5) how to identify construction strategies from known geometric constructions used 

in text books. 

Besides these starting questions, other ones were introduced during the research, 
defining subgoals which are described in Sections 5 and 6. 

3. Problem Formulation 

The types of problem suitable for our geometry theorem-prover are here presented, 
by means of  the description of the statement of a problem and by an example. Details 
are given of the representation chosen for the basic geometric primitives and the 
choice of a canonical naming method, i.e. how to define a unique fixed name for the 
geometric objects. 

The representation and canonical naming have a particular influence on computation 
time. Moreover, further developments of GEOM will also depend importantly on 
how basic geometric primitives are manipulated if each time a new fact (or iemma) 
is derived it is desired to stored it in the data base. Also, during the proof  it is often 
necessary to retrieve an already proved fact from the data base. Storing and retrieving 
huge amounts of derived facts, not always useful, may lead to combinatorial problems 
which must be harnessed. 

3 1. THE STATING OF PROBLEMS IN G E O M E T R Y  

The statement of a problem in geometry is done by its (optional) diagram, the 
hypotheses and the goal. 

The geometric diagram is a set of points, defined by their cartesian coordinates. Its 
declaration is optional for the user of GEOM with minor changes to the program; 
when it is given it aids in the proof  of the goal. However, the diagram is only a 
particular case of a whole class of  geometric figures for which the problem (theorem) 
in question must be true. The diagram works mostly as a source of  counter-examples 
for pruning unprovable goals, and so proofs need not depend on it: a proof  of a 
theorem can be carried out without the use of a diagram. However, the diagram may 
also be used in a positive guiding way as described in Section 4.3 

There are nine predicates with which to express the hypotheses of a geometry 
problem: 

(1) the basic ones are 
LINES 
PR(parallel segments) 
ES(equal segments) 
EA(equal angles); 
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(2) the convenient high-order ones, definable in terms of the basic ones above, 
are 
RA(right angles) 
RECTANGLE 
SQUARE 
PARALLELOGRAM 
MIDPOINT 

There are seven predicates to indicate the top possible goals: 

(I) the basic ones are 
PR, EA, ES 

(2) the convenient high-order ones, definable in terms of the basic are 
RA, CONGRUENT, PARALLELOGRAM, MIDPOINT 

3.2. EXAMPLE OF A PROBLEM SPECIFICATION 

A geometric problem becomes defined by the optional diagram (cartesian coordinates), 
the hypotheses and the goal. 

Let us take an example from Gelernter [10], used as input to GEOM: 

DIAGRAM: 
A(0,4) B(2,0) C(8,8) D(2,4) E(8,4) M(5,4) 

HYPOTHESES: 
LINES(AB,BMC,CA,ADME,BD,CE) 
MIDPOINT(M,BC) 
RA(ADB) RA(AEC) 

GOAL: 
ES(BD = EC) 

3.3. THE PROBLEM COLLECTION 

The problem collection was built with problems from previous work: 

problem 1: Gelernter [10] problem 1 
problem 2: Gelernter [10] problem 2 
problem 3: Gelernter [10] problem 3 
problem 4: Gelernter [10] problem 4 
problem 5: Gelernter [10] problem 5 
problem 6: Goldstein [12] problem 1 
problem 7: Goldstein [12] problem 2 
problem 8: Goldstein [12] problem 3 
problem 9: Goldstein [12] problem 4 
problem 10: Goldstein [12] problem 5 
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Fig. 1 

B 

The diagram of problem 3. 

problem 11: Goldstein [12] problem 6 
problem 12: Nevins [13] problem 1 
problem 13: Nevins [13] problem 2 
problem 14: Nevins [13] problem 4 
problem 15: Welham [18] problem 1 
problem 16: Welham [18] problem 2 

The selection of these problems was based upon the 'degree of difficulty' of  their 
proofs, and in order to permit comparison between program characteristics. In 
Appendix 1 a sample of this collection is presented. Note that for each problem only 
one proof  is provided. 

3.4. CHOICE OF A REPRESENTATION FOR THE BASIC GEOMETRIC PRIMITIVES 

A general and flexible representation for the three basic geometric primitives used - 
segments, directions andangles- is needed to encode them, since these primitives form 
the basis of any geometric knowledge to be added to the data base. The flexibility and 
generality are achieved by the concept of equivalence class, which allows, for example, 
that one direction be represented by any other element of its equivalence class. An 
angle can be defined by three points or by two directions, as Figure 2 illustrates. A 
direction is represented by two points, e.g. DI -= A : B, where 

D1 = B:A is the opposite direction 
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Fig. 2. 

A:B 

A 

B -B D~ANGLE 

D2 "c"c 

The representation of an angle. 
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1)A.aC 
2) A:B. B:C 
3) o l .  oz 

Dt=A:B 
D'I =E~A 

Fig. 3. 

B= ba 
C A C ~  b ~  C = ab 

D=ba 

The four cases arising in the representation of an angle. 

Each angle segment becomes defined by two points of  its direction. One direction can 

be defined by any pair of  points belonging to the same equivalence class of  pairs. In 
Figure 3 we can see the four cases for an angle, less than 180 degrees, defined by two 

directions: a and b. 
Once we impose a reading direction, e.g. the clockwise direction, we may have only 

two cases: angles A and B, i.e. acute and obtuse. In our problem collection we have 

only angles less than 180 degrees and no other angles are considered. 

3.5. THE CANONICAL NAMING 

The canonical naming routines are a set of rewrite rules, applied to an expression, to 
get it into some standard format. They reduce the ambiguity resulting from the 
syntactic variations of  the thin named. In fact, canonical naming is a technique for 

overcoming combinatorial problems and to make the data base inquiry easy and fast. 
This elimination of redundant searching is also achieved by the data base organization, 
as it is explained further on in Section 5.7. 

In geometry, combinatorial problems are very common,  partly because of  transi- 
tivity, when equality and congruence relations are involved. For example, if triangle 

ABC is congruent to triangle DEF one can store this fact in 72 variations. When 
during the proof  it become necessary to retrieve that triangle EFD is congruent 
to triangle BCA, the fact can be as just one of the possibilities of that set of  
variations. This is done with the use of  canonical names in the geometric primitives 
for segments, directions and angles, i.e. a standard variation representing the thing 

named. 
For segments, the endpoints are ordered alphabetically. In the following example, 

segment CA would be represented as AC. For segment AC, the representation would 
be AC itself. The case of  an angle, DEH for example, is dealt with in the following 

way. 
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As D < H the canonical name of angle DEH (i.e. D : E.  E : H) is D : E. E: H. 
For angle HED, as H > D, the canonical name is not H : E . E : D ,  but it is 

D : E.  E : H (there is an inversion of pairs and an inversion of each pair). In fact angles 
DEH and HED are the same and, thus, they have the same canonical name. 

The case of an angle defined by two directions, D I .  D2 (e.g. A: B. C: D) expressed 
by different points is dealt in another way. As A is the alphabetical least of  four points 
A, B, C, D, i.e. A < B, A < C and A < D, the canonical name of  angle A : B.  C : D 
is A : B . C : D .  

Now, consider an angle defined by three points (A, B, C) or by two directions. Let 
us calculate, for each of these two representations, the number of alternative names 
for the angle when there are additional points in the two angle segments: 

No. of  points RP RD 

3 2 4 
4 4 4 
5 8 4 

RP representation with points. 
RD - representation with directions. 

The representation with directions is thus recommended for angles that can be defined 
by more than for 4 points. 

Canonical naming permits also to assert equal supplement angles when equal 
angles are proved. This is a consequence of the chosen representation (directions 
instead of points). The representation by points does not allow this. 

4. P r o b l e m  S p e c i f i c a t i o n  

A brief description of GEOM's  knowledge domain is presented: the geometric 
(axioms and theorems for elementary plane geometry) and arithmetic (needed for 
using the diagram of points with coordinates) knowledges, the utilities (the procedures 
available for special purposes, e.g. procedures to find points or directions) and the 
uses of  a geometric diagram. This knowledge is sufficient to deal with the geometry 
problem domain covered in the previous section. 

In GEOM there is a clear distinction between two components of an algorithm 
specification, the logic component (what it is required to be solved) and the control 
component (how the problem is to be solved). This separation is facilitated in 
PROLOG, a more descriptive or high level language than the conventional procedure 
oriented ones [6], PROLOG allows the programmer to explain what is the case, 
knowing at the same time that he is implicitly specifying to PROLOG how the case 
is to be searched for. 
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4.1. GEOMETRIC KNOWLEDGE 

The geometric knowledge of GEOM, i.e. some of the axioms and theorems of 
elementary plane geometry, is embodied in nine procedures. They are: equal angles 
(EAI),* right angles (RAI), equal magnitude (EM, EM1), equal segments (ESI), 
midpoints (MP), parallel segments (PRI), parallelogram (PG), congruence 
(DIRCON) and diagram routines. 

The equal magnitude procedures convert angles to their internal represen- 
tation before testing for an immediate equality or a data base equality. The midpoint 
procedures are of two sorts: the first is dedicated to storing a useful theorem, 
relating midpoints and parallels in a triangle; the second is able to generate new 
points. 

Each procedure is organized to allow for a first look into the data base before any 
attempt to prove is made. Thus, for each one, the first clause provides access to the 
data base. To facilitate the access to a specific clause (e.g. the case for congruence 
routines), each of the clauses of equal angles and equal segments procedures are given 
a name, specified as one of the arguments of that clause. 

Because each procedure may call itself through others, the search space can grow 
quite large, in particular when the clause for differences of segments is used. To avoid 
this combinatorial problem, Golstein [12] and Welham [18, 19] have not adopted the 
method of difference of segments. 

Again, when constructions are introduced through congruence procedures, extra 
clauses are added to the data base and the explosive situation is aggravated. This is 
particularly visible for problems 13 (PR13) and 14 (PRI4) of our collection on 
account of their large space of derivations. However, a combinatorial explosion 
occurs for PR14, even when the difference of segments method is not considered. The 
use of this congruence procedure is then compulsive and a depth-first exploration is 
done for each possible construction. 

4.2. THE UTILITIES 

The utilities are special purpose and data management procedures. As examples we 
mention: 

(1) a counter of the number of points in the diagram; 
(2) the procedure for trying congruences using bottom-up inference making on the 

data base; 
(3) procedures for finding points and directions using diagram knowledge; 
(4) a clause to get three points for defining an angle given two directions; 
(5) procedure to operate on lists; 
(6) clauses to verify identities (points, angles); 
(7) clauses to identify opposite, same and distinct directions; 

* In parenthesis we give the name of the corresponding predicate. 
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Fig. 4. Proof of two equal segments (UV = XY) by congruent triangles. 
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(8) procedures to verify point collinearity; 
(9) clause for verifying a triangle equilateral; 

(10) procedures to pick up a third side, a third equal side or a third equal angle, given 
the other two; 

(I 1) procedure for the management of unit clauses in the data base; 
(12) procedures for generating permutations. 

4.3. THE USES OF A GEOMETRIC DIAGRAM 

Two uses of the geometric diagram as a model are made: 

(1) the diagram as a filter (it acts as a counter-example); 
(2) the diagram as a guide (it acts as an example suggesting eventual conclusions). 

As afilter the diagram permits to test the nonprovability of a candidate subgoal, by 
doing calculations with the coordinates given by the diagram. This way of rejecting 
goals was proposed for the first time by Gelernter [10]. 

The use of the diagram as a guide for helping the search is briefly explained in the 
following example (see Figure 4). We want to prove two equal segments UV = XY, 
by congruent triangles. Suppose triangle XYZ exists, and our purpose is to find a 
triangle UVW on UV to compare to triangle XYZ. We need to search for existing or 
generated triangles on UV. The first thing is to find a convenient third point W, which 
must be different from U and V. The possible coordinates of the sought point W are 
computed from the coordinates of X, Y, Z, U and V, and a check is made in the 
diagram to see ifa point with such coordinates exists. The diagram is used in a positive 
way for computing the possible coordinates for W. 

5. Points of  Friction 

During the development of GEOM, several problematic points ocurred which 
motivate the discussion about the arquitecture of the whole program. These 
points were largely suggested by an analysis of the geometry problems collection. In 
this section we state these points and we consider the methods used to solve 
them. 
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Fig. 5. Generation of congruent triangles for the proof of two equal segments (AB = EF) by congruent 
triangles. 

5.1. THE GENERATION OF TRIANGLES 

The proof  of  two equal angles or two equal sides can be done by congruent triangles. 
Before the use of  the congruence procedures it is necessary to have (either by 

generating them or by checking for their existance) triangles containing the angles or 
the segments. 

The equal angles and equal segments procedures of  G E O M  have two clauses, under 
the heading 'indirect strategies', which make use of  the congruence procedures. These 
two clauses synthestize four search cases for pairs of  triangles: 

(1) existing-existing, 

(2) existing-generated, 
(3) generated-existing, and 

(4) generated-generated. 

The above order is motivated by the need to use first what is already known and stored 
in the data base what we call existing triangles. For  example, if it is required to prove 
AB = EF by congruent triangles, GEOM checks its data base for points C and D, 

and directions C : A, C : B, D : E and D : F. I f  these direction exist, we have triangles 

CAB on AB and D E F  on EF. I f  not, it is necessary to add such directions to the data 

base as a means to construct segments A.  C, B. C, E.  D and F.  D (see Figure 5). 
Only the first case corresponds to the situation where the triangles already exist on 

the given segment or contain the given angle. The other cases refer to the generation 

of triangles and the possibility of  making constructions as they are needed. 

5.2. THE INTRODUCTION OF NEW POINTS 

The introduction of new points can be envisaged as a means to make explicit more 
information in the model (diagram), which is not contradictory with the hypotheses. 
This introduction does not reduce the search space but for certain cases it may create 
short cuts or new paths, which diminish the steps of  a proof. The introduction of new 
points was motivated by the analysis of  problem 10 (see Figure 6). 

F is the point to be introduced. As point F is the intersection of the diagonals of  
a rectangle, its existance is known for any model. So, during the input of  rectangle 
ACDE, F is introduced and its consequences, new equal angles and sides (e.g. 
diagonals equality), are asserted in the data base. 
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Fig. 6. The diagram of problem 10. 

The existance of point F allows the construction of segment BF, and thus the 
congruence of triangles BAF and BCF to be proved. As a consequence, a new fact is 
asserted, the equality of angles BAF and BCF, and another congruence of  triangles, 
between BCE and BAD, becomes possible. 

This proof  is general, as it utilizes a theorem (congruence of triangles) independent 
of point B's position. On the other hand, Goldstein's proof  [12], without the intro- 
duction of F is too particular, because it depends on the position of B: 

(1) for B out of  the rectangle it uses sum of  angles theorem; 
(2) for B inside the rectangle it uses the difference of angles theorem. 

Both theorems particularize the model, i.e. they are falsely used for some interpret- 
ation. But in first order logic theorems must be valid for all interpretations. However, 
a specific model can be considered as a general or categorical one, if what it particular- 
izes is not used in the proof. Goldstein's error consisted in using facts not in the 
hypotheses (or not concluded), i.e. he used a specific diagram unwarrentedly as a general 
positive example. However, the diagram's role in this case is to act as a counter-example. 

But a diagram for this problem is not unique (B can be anywhere on the perpen- 
dicular bissector of  AC). For GEOM, there is no difficulty at all if the new element 
F is coincident with B, since the congruence of two degenerate triangles is still a 
congruence. Thus, no use is made of what particularizes the diagram. 

For this example, it is clear that simplification is obtained when a new point is 

introduced. A combinatorial explosion would occur if F was not created, because a 



340 HELDER COELHO AND LUIS MONIZ PEREIRA 

case analysis, involving a sum of  angles clause would be required. On the other hand, 
for problems with a large search space, the introduction of  a new point would be 
relatively catreastrophic: a combinatorial explosion would occur. For our problem 
collection a heuristic was devised in order to balance the advantages and dis- 
advantages of doing this construction: "only for diagrams with less than 8 points is 
the introduction of a new point for quadrilaterals permitted". 

This facility, of introducing a new point, is available for quadrilaterials only. The 
new point is the intersection of the two diagonals, and the midpoint of  each one. The 
coordinates of the midpoint are calculated using the diagram, and its name is chosen 
from an alphabetical list, from which the characters of the existing points are taken 
out. The generation of midpoints is preceeded by testing for then existence, and 
followed by the assertion of equal segments, equal halves and directions for the new 
constructed segments. 

5.3. BREADTH-FIRST VERSUS DEPTH-FIRST SEARCH OF THE CONGRUENCE 
PROCEDURE 

The congruence procedure allows two kinds of search: 

(1) a shallow breadth-first search in the data base; 
(2) a general depth-first search. 

Thefirst kind is done beforehand for each of the five methods of triangle congruence 
(Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Side-Angle-Angle, Rightangle- 
Side), when looking for known facts. 

The second kind is only attempted if the first fails to find a triangle congruence. This 
was also done in Nevins's program [13]: it tries to narrow down the selection of new 
subgoals on the basis of  information already present in the data base. 

The motivation for this sequence of attempts was suggested by the analysis of  
problem 1 (PRI) and by the behaviour of the PROLOG system. A quick look at PR1 
revealed that the facts necessary for the proof  were already available in the data base. 
No depth-first search (imposed by PROLOG strategy) was required. However, if a 
shallow breadth-first is not in force, there is a progressive search in depth, the 
generation of more subgoals and a combinatorial chain reaction. 

5.4. DOING, NOT DOING AND UNDOING CONSTRUCTIONS 

When a human being does a proof  he sometimes introduces new relations, by making 
constructions which fill a gap in the chain of reasoning. 

In automatic theorern-proving it is also advisable to explore this mechanism of 
doing constructions. To discuss its implementation in GEOM, let us consider three 
questions: 

(1) what are the objectives of  this mechanism? When should it be used? 
(2) what are the required kinds of constructions? 
(3) should constructions remain in the data base after they have been used? 
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The motivation for discussing these questions was raised by problem 8 (PR8) where 

two constructions, lines SU and TR, made the proof  possible. Let us see the con- 

struction process for this example. In order to prove the equality of angles STU and 

RUT,  by congruence, we need to construct the missing parts of  triangles STU and 
RUT: lines SU and TR. These lines are also necessary for proving the equality of  sides 
US and TR by congruence, which are in fact the missing parts of  triangles SRU and 
RST. This last equality is motivated by the first congruence. Another motivation came 
from PR 13, where a construction, line NC, explores a new pathway to the goal, as it 

is depicted in shown in Figures 19 and 20. 
This kind oJ construction only requires additional line segments, constructed 

between points already present in the diagram. Each segment is defined by a direction, 

i.e. a unit clause. In the search tree, each construction is a new terminal node, and a 
new link is made when a unit clause corresponding to a construction is used. 

A further motivation was to implement a construction facility for missing segments 
when proving that two segments are equal. 

In particular, the third question concerns the data base management of  the additional 

clause, defining a construction. In fact two additional clauses are asserted, because the 
opposite direction is also stored (similarly, the supplement angle is also stored with 
each angle). 

Consider the example of  part  of  the structured data base for a proof, as illustrated 
in Figure 7. 

For this example two subgoals were tried without success. These failures are stored 
as nonprovable goals (NP). 

After the failure of  the two non-provable subgoals, a construction is made on 

demand of a goal in the congruence clauses for equal sides. A flag and the new unit 
clause are asserted in the data base. The flag hides the previous nonprovable goals, 

which may become provable now that the construction was done. In the context of  
this construction a third new provable goal fact is derived and asserted as a lemma. 

f 
in the context | 
of previous 

construct i ons 

+ D ( 2 )  
+ NP (FkAO). 
+ N P (  3 ). 

+o (1) .  
+NP ('FLAG), 
+NP(  2 ). 

+NP(  1 ) .  

o 

10 be erase  

l } tO be e r a s e  

Fig 7 Data base of non-provable goals tn the context of constructions made 
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No other lemmas are generated and still the goal which motivates the construction, 
is not proved. 

The undoing of a construction is motivated by the need of avoiding a combinatorial 
explosion, more likely if the unit clause was kept forever in the data base. The 
nonprovable subgoals and lemmas generated after a construction process, stay avail- 
able a fo r t io r i  for the continuation of the proof, even after that construction is 
undone. If and when a construction is undone, the flag, the direction unit clauses, but 
not the nonprovable subgoals are eliminated. 

5.5. THE NEED FOR THE USE OF CONTEXT 

Paths enabled by constructions may not enable the proof  of the goal clause. In spite 
of this failure, some facts may be proved and asserted in the data base. However, no 

contex t  distinction is done between these facts and the facts proved during a successful 
path. For  example, to prove equal sides by congruence, additional line segments are 
required for building triangles. During the exploration of  each construction some 
proved lemmas are asserted and may be used later on, as it is shown for BA = NC 
along the proof  of Figure 19. 

One use o f  con tex t  was implemented in GEOM, concerning the recording of failure 
goals (nonprovable goals). Consider Figure 7 where a construction occurs after two 
nonprovable goals. A flag makes invisible these nonprovable goals to the exploration 
subsequent to that construction. Thus, these nonprovable goals remain only in the 
context of previous constructions. 

The objective of using context information is the recognition of a goal which failed 
before, but only if no new construction has been made since. The mechanism to 
implement this objective is composed of two clauses, the non provable filter and the 
record failure ones, respectively at the top and at the bottom of the equal angles and 
equal sides procedures. The first clause recognizes failed goals in the context of 
constructions made and the second one stores them. A further discussion of this point 
is done in Section 6.3. 

5.6. TWO TYPES OF CALL OF A CLAUSE 

PROLOG has only one k ind  o f  variable - the logical variable - which may be 
either an input or output variable. This distinction depends on the mode of use of 
the clause containing the variable. We distinguish two modes  or types of  call of a 
clause: 

(1) all variables are instantiated - to verify; 
(2) at least one variable is not instantiated - to find. 

T h e f i r s t  type, to verify, is used for example for verifying the existance in the data base 
of a certain fact. It corresponds to checking, the first of four tasks in automatic 
theorem-proving discussed in van Emden [6]. 
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Consider a theorem to be proved of  the following form: R(A, B). This form 

determines the task of  checking, with two possible answers: yes or no. An example 

from geometry illustrates this task: 

Question: is segment AB equal to segment CD? 

The translation of this question into P R O L O G  is the single argument procedure call: 

- ESI(A. B = C .  D ! , X I  !,X2) 

which activates the equal segment procedure of  GEOM: 

+ ESI(SI .  *$2 = *$3. ,S4!WHY!DBAS) 

where ,S l, ,$2, ,$3 and *$4 act as input variables. The atoms W H Y  and DBAS that 
are used to denote look up the reason for the truth of  the goal. 

The second type, tofind, is adopted to search for a desired fact in the data base. It 
corresponds to simulation, another task of automatic theorem-proving. 

Consider a theorem to be proved of the form: 3X R(A, ,X). This form determines 
the task of simulation, with two possible answers: yes , X  - B, or no. An other example 
from geometry illustrates this task: 

Question: is there any segment with extremity A 
equal to any segment with extremity C? 

The translation of this question into P R O L O G  is the procedure call: 

- ESI(A. ,X  --- C.  , Y ! , X I  !,X2) 

which activates the equal segments procedure (ESI) of  GEOM. *$3 and ,$4 act as 

output variables. The result is: , X  = B and , Y =  D 

The first type of call of  a clause, to verify, is the most common in GEOM. The second 
type, to find, is used for instance when the bottom-up procedures are activated. 

5 7. THE DATA BASE AND ITS ACCESS 

The ultimate objective of  a data base is updating and retrieving facts. The addition 
of new facts and its retrieval depend on the structuring and the searching of  the data 
base. Two concepts, equivalence classes and canonical naming, help to structure and 
access the data. The equivalence class concept is particularly important  in geometry 

since we are dealing with equivalence (or rather congruence) relations, such as side 
and angle equality or parallelism. 

The data base we have used stores each relation between two elements in the 
equivalence class of all other elements known to be in the same class. Each 
equivalence class is represented by an oriented tree in which the arcs stand for 
individual relations between elements (the nodes) and in which the root is taken as the 
representative element (or witness) of  the class. With this representation transitivity 
is obtained for free since any two elements with the same witness are implicitly in 
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Fig. 8a. The growing of an equivalence classe tree. 

B ~ E 

Fig. 8b The growmg of  an equivalence classe tree. 

J "  E 

B J 

Fig. 8c. The growing of  an equivalence class tree. 

relation (although no explicit arc may exist between them). These trees grow by 
merging as explained in the example illustrated in Figures 8a, b, and c. 

Five facts (A, B, C, D and E) and three (equivalence) relations (R(A, B), R(B, C) 
and R(D, E)) are given. When these relations are stored, the resulting trees are 
sketched as follows in Figure 8b. 

The trees pictured above are composed of two disjoint equivalent classes. Elements 
B and E are chosen arbitrarily to be the witness in each class. The arrows on the arcs 
show the direction of growth of thre tree. In the data base three relation elements are 
stored: R(A, B), R(C, B) and R(D, E). One relation element, R(C, D), is added. Both 
classes are merged and one of the witness, E, is chosen to be the witness of the enlarged 
class. The tree at this stage is illustrated in Figure 8c. This kind of organization was 
firstly suggested and implemented for all three sets of assertions (equal angles, equal 
sides and same direction). An example of a tree of parallel directions is presented in 
Figure 9. 

C:D r  

AB is parallel to CO ~ ' ~  
and 

EF is pe, r,3tlel to CD 

A ; E  E : F  

Fig. 9. A tree of  parallel directions 
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Fig. 10. The tree orgamzatlon of equal sides 
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Fig 11 The construction of congruent triangles on equal sides. 

The direction of CD ( C : D )  is the witness of  these three directions. This tree 

represents an equivalence class, and it is easy to conclude that AB is parallel to EF, 

i.e. we get transitivity for free. We say (C : D) is the witness o f (A : B) if there is another 
direction (E : F) related to (A : B), i.e. with the same direction. Another example, for 

equal sides, is depicted in Figure 10. 
This characteristic of  the data, the existence of relations with the three properties 

symmetry, reflexivity and transitivity, suggests an appropriate data structure, the tree, 

for the equivalence classes, which aids in deductions based on the set of  properties. 
Transitivity implications from sets of  facts are automatically available in the 

structure, with no additional memory,  and with an appropriate access scheme. 

Symmetry is dealt with by canonical naming. 
This data structure, the tree, copes well with one sort of  query. The following 

question is an example: "'is AB parallel to CD?" However, when a bot tom-up 

procedure was introduced, to generate more facts from the existing and given facts, 

some difficulties occurred, on account of  the type of questions stated. The following 

question is an example: "is there any segment with extremity A equal to any segment 
with extremity C, AX = CY, where the variables X and Y are not instantiated?" 

Let us see, by means of an example, the kind of difficulties that occur if we use the 
tree s tructure.  

The bot tom-up procedure consists in trying to find and to prove two congruent 

triangles, given the facts in the data base. The new facts infered and asserted may be 
useful in the top-down search. In order to find two congruent triangles, two equal 
segments are picked up from one tree, starting at the top witness. For each segment, 
one point is picked up, Y and W, such that XY = UW and YZ = WV. 

To retrieve such pairs of  equal sides, from each tree, takes too much time, on 
account of  the necessity of  scanning the whole tree, although it is fast to find a witness. 
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A B C E D 
C ~ -  ----O. , I  . . . . .  -O 

Fig. 12. List structures representing equivalence classes. 

A B C E D 

O - - - - ~ - - O  ~ -O--~ . . . . . . . . .  -O----~-----O 

Fig. 13. The construction of a hst structure. 

Instead, i fa  list structure is chosen, picking up a pair is easier and faster, as we shall show 

next. An advantage is that one needs only one access clause for both types of  access. 
The list structure is obtained by a different way of  linking the equivalence class 

witnesses: the witness of  an equivalence class points to the tail of  the related 

equivalence class. Consider the previous example, employed to explain the growing 

tree structure. For the list structure, Figure 12 below sketches the stage of adding three 
new relations to five old facts. 

The lists represent two disjoint equivalent classes. Elements A and E, respectively, 

are chosen to be the witness of each class. The arrows on the arcs show the building 
direction of  the lists and point towards the head or witness of  the lists. If  a new 
relation, R(C, D), is added, both lists are linked as shown in Figure 13. 

The witness or hear of  one equivalence class is connected to the tail of  the other 
related class. If a question occurs about  the equality of  AB and GH,  the answer is 

quickly retrieved. A practical example for equal angles is depicted in Figure 14. 

Thefinal adopted solution contains both data structures discussed, in order to balance 
the requirements imposed by the two sorts of  questions. Both data base structures are 

devoted to relate the elements of  each one of the sets of  relations of  assertions: 

(1) a tree for directions, and 

(2) lists for equal segments and equal angles. 

There are two data base axioms, one for equal segments and another for equal angles. 

These axioms allow two sorts of  retrieving, which correspond to the two questions 
pointed above: to verify or to find a relation in the data base. The axioms are founded 
on the concepts of  witness and equivalence class, and use canonical naming. 

1 
C:R. N:Q 

N:B.~B:S 

m 

B: N-N:Q 

B:S!R:C 

t 

N:B.S:R 

C:R!Q:N 

B:S IC,R 
B: N .IQ '.N 

Fig 14 The hst orgamzatlon for equal angles. 
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top down ~-:_~: i V m i x t u r e  of  , ,:_~ . ,_. __,,., b o t t o m  up ~ _  both 

t ~ z 
. -  _2 -= ~x 

F~g. 15 Top-down  versus bo t t om-up  searches. 

Let us for the f irst  O'pe - to verify - present an example: 

to prove BA is equal to CD 
try first to verify if the face 'BA = CD' is in the data base. 

As this pair of sides is not an identity, each element is put in the canonical format (AB 
and CD); and if both sides have the same witness, they are found to be equal. 

In the second type, so find, the access axioms are able to discover if the relation 
required is in the data base. Consider the following example to explain how this 
discovery is carried out: 

to generate more facts based on the given fact AB = CD, try to prove triangle 
ABX congruent to triangle CDY; to achieve this goal; find AX is equal to CY 
(X and Y are variables). 

The objective is to find in the data base a pair of equal sides with only two known 
points A and C. The equal segment procedure is activated by a procedure call with 
two variables not instantiated and acting as output variables. The data base access 
axioms are also activated with the two variables not instantiated. For this case, the 
identity and canonical naming clauses stay inactive and it is only found whether there 
is any pair of equal sides on A and on C. 

5.8. T O P - D O W N  V E R S U S  B O T T O M - U P  S E A R C H E S  

The controversy between the adoption of top-down or bottom-up directions of 
execution is also present in making a geometry theorem-prover. While Gelernter [10] 
and Goldstein [12] defended the first approach, Nevins [13] argued in favour of  the 
second. However, it is quite clear that the set of  problems chosen by each researcher 
was primarily linked to their point of view, and each problem was selected to adjust 
to it: Gelernter's and Goldstein's problems were suitable for top-down analysis, and 
Nevin's problems t'or bottom-up analysis. Indeed, the efficiency of each geometry 
prover was doped by the direction of analysis of the problem sample, and no one 
clarifies this. A general prover should be able to mix both directions of execution. 

This controversy would be more relevant if we had a precise answer to the 
questions: "how do we define a typical bottom-up or top-down problem in 
geometry'?". We propose the following definitions. 
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Typical top-down problems are those for which there is only very few consequences 
when the congruence relation is applied on the given facts. 

Typical bottom-up problems are those for which there is a lot of consequences 
when the congruence relation is applied on the given facts 

Nevin's problems, typically bottom-up, are in a way very connected because they 
hide given facts behind congruence relations. Welham [18, 19] showed that when the 
problem is adequate for a bottom-up analysis a typical top-down prover does a lot 
of search to find the halt clause. Similarly all of Nevins's examples, which do very well 
with this bottom-up methods, are difficult for our top-down prover. Analysing the 
proof tree for one of these problems (PR13), we may observed the following: 

(!) the clauses" ordering for a predicate defines the search sequence. An ordering 
adequate for bottom-up problems is not suitable for top-down problems. The 
position of the transitivity clause is especially critical. In our program, during 
top-down, transitivity transforms one given problem into two similar problems. 
However, used bottom-up, it transforms two known facts into three known facts. 
That is why we structured out data base to get the third fact for free, by using the 
equivalence class plus witness structure. We are in fact doing an implicit (shallow) 
bottom-up when we assert facts into the data base. 

(2) generally, in bottom-up problems we find a gap when we go top-down. This gap 
may be easier to fill if we generate some more facts at the bottom. 

The bottom-up direction of execution is independent of the goal clause. Top down 
direction of execution is independent of the hypotheses. A mixture of both is desirable 
to control 'dispersion', but the two "cones" may miss each other completely. 

Deciding upon one, it is advisable to compensate by doing a bit of the other. We 
note in passing that Nevins also does top-down search, when proving equal angles or 
equal segments by triangle congruence. With this view in mind, and for bottom-up 
problems (e.g. PR13), we introduced a shallow bottom up search right at the start. 
The bottom procedure generates more facts upon the given hypotheses, trying to find 
implicit triangle congruences in the problem data. For each pair of equal sides it looks 
for existing triangles, with at least three already known facts, and asserts its 
deductions in the data base. 

5.9. THE HEURISTIC USE OF TRANSITIVITY 

Transitivity relations may play an important role in proofs, because they guide the 
search for the proof, improving the efficiency of GEOM. This role is particularly 
relevant for typical bottom-up problems, on account of the top-down character of 
GEOM. For this kind of problems we usually find a gap, when we do top-down. One 
way to fill this gap is the generation of more facts at the bottom, through the bottom 
procedure discussed in the previous section. An alternative way is the use of 
transitivity at the top, to reduce one given problem to two dependent sub-problems. 

As an example consider problem 14, sketched briefly in Figure 16 (see its proof in 
Figure 22). 
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Fig 16. A part of the diagram of problem 14. 
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The goal is to prove two equal angles EAD and CAD. A simple use of  transitivity 

consists in replacing the goal by two sub-goals, through the introduction of a third 

element. One way to find this element is to recognize a third equal angle by parallel 

sides. Thus, the first sub-goal shown below is proved, and a proof  is tried for the 

second sub-goal. 

GOAL: < EAD = < CAD third equal angle: < N D A  

1st. SUB-GOAL: < CAD = < N D A  by paralell or antiparallel sides 

2st. SUB-GOAL: to prove the equality of  EAD and NDA. 
The motivation for the use of  transitivity was spurred by the analysis of  PR 13 and 

PR14. In both cases there was an immediate need for the use of  transitivity to link 

proof  steps. This need was uncovered by the top-down character of  GEOM. In 

Nevins's work this need was taken care of  by the use of  bot tom-up search. 

A pertinent question is the selection of the best place in the program for the 
transitivity clauses for equal angles, equal segments and parallel lines procedures. In 

G E O M  the transitivity clauses were inserted at the bot tom of each group of clauses, 

as the last thing to try. However, would this property be explored at its maximum, 

if it was embedded in each clause? 

6. Computational Control 

Efforts were made to sepaerate logic from control and to make explicit pieces of  

control, because it becomes easier to understand and modify a program, and it makes 

possible the use of  the same logical clauses with different controls. In fact, we 

experimented and concluded that we could separate them in GEOM.  

6.1. THE SEPARATION BETWEEN LOGIC AND CONTROL 

A separation between logic and control is possible and desirable in P R O L O G  
programs, as GEOM. The distinction between the two components of  the specification 
of an algorithm A: 

A = L + C  
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the 'logic' component L, which expresses what is to be done, and the 'control' 
component C, which expresses how it is to be done, makes it easier to write and to 
understand a program (see van Emden [6]). 

Prolog, a programming language based on predicate calculus, is not a purely 
descriptive language as predicate logic. It requires one to express additional infor- 
mation on how to do it. This separation was implemented in three procedures: equal 
angles, equal sides and congruence routines. It was motivated by the need for more 
control because of the use of a bottom up procedure concurrently with the top-down 
ones. This implies two types of call of a clause and data base handling operations with 
variables not instantiated, already discussed. Moreover, the use of a shallow bottom- 
up requires a discussion on the modification of the congruence routines. 

6.1.1. In Equal Segments and in Equal Angles 

The first point, similar in both the equal segments and equal angles procedures, is 
related to the two types of call of the clause giving access to the data base, clause 
DBAS. 

For the first type, to verify, all variables are instantiated (or ground) and the clause 
is required to be used only once. For the second type, to find, at least one variable is 
not ground and it is necessary to access the data base several times, in order to retrieve 
all possible instantiations, and get a fully exploration by the congruence procedure. 
This control is accomplished by the clause CHECKS (and by CHECKA for the equal 
angles procedure). 

Let us see an example concerning the use of a congruence clause, CON3 (a con- 
gruence theorem), when it is called by BOTTOM, with two variables not instantiated. 

This is the case which arises in the derivation of the possible consequences from the 
following fact: AB = CD. The objective is the exploration of all existing triangles on 
AB and on CD. This exploration is done by the procedure CON3. For the first clause, 
the congruence theorem regarding equality of sides (S-S-S), is required to find one or 
more pairs of sides, on points B and D. This is done by the first call 

- ESI(8. , Z  = D.  , W ! , W  1 !DBAS) 

of the clause with head 

+ CON3(A. B. *Z = C.  D.  ,W,DBAS.  DBAS, GIVEN). 

E ~G F~H 

A B C D 

Fig. 17. The search for a congruence relation. 
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The variable .W1 acts as a slot for explanation information. The atom DBAS is used 
to force data base look up first. 

A pair is picked up, for instance BE = DF, and it is checked if AE = CF (see 
Figure 17). 

As this fact is not true, another pair is picked up, for instance BG = DH, and it 
is checked if AG = CH. The search goes on, controlled by claus CS till all possible 
pairs are searched for. 

The second point, for equal angles, is related to the use of canonical naming 
routines, when at least one variable is not ground. This point is not yet solved, and 
a by-pass solution was adopted: the angles are generated and filtered by the diagram 
(EAFILTER);  afterwards, they are checked either as immediate equalities or as 
existing already in the data base. The second point, similar to the one for equal 
segments, is easily solved and direct retrieval is possible either with all variables 
instantiated or not. 

6.1.2. In the Congruence Procedure 

The introduction of a shallow bottom-up search leads to two types of  call of a clause, 
and to a slight modification of the control for the congruence routines. 

A separation between the logic and the control was done by eliminating extra 
control evaluable predicates in the clauses of the congruence procedure, and con- 
structing clauses to describe the behaviour of  the inference process (how to do it). 

Let us remark in passing that in general, and so for the whole of  GEOM program, 
one can isolate the control in control clauses which access the appropriate logic 
clauses as long as they are identified by an extra argument giving them a name. 

One of the calls of  each congruence clauses (CON3) is a filter (CONFILTER) able 
to control the search. It is only activated for the bottom-up search, simultaneously 
with the clause EAFILTER,  responsible for the generation of angles. 

During bottom-up search, each congruence clause (congruence method) is used at 
least once, to retrieve all possible sides from the data base which are necessary for 
constructing triangles on the pair of sides chosen by the bottom procedure. 

The CONFILTER,  composed by a diagram filter and a switch, is able to reject pairs 
of triangles for the following cases: collinear points, same triangle and already proved 
congruent triangles. The re-use of  each congruence clause for finding another pair of 
congruent triangles is effected by a simple switch clause. 

6.2. MAIN CONTROL DEVICES 

Control devices are special clauses able to guide the search and avoid unproductive 
search (e.g. impossible goals, loops). In GEOM, there are two types of control devices: 

(1) model as a filter, and 
(2) filters. 
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In thefirst type, a model (i.e. a particular interpretation of a general logical statement) 
is used as a filter. It prevents irrelevant goals from being pursued. As an example, we 
have the geometric diagram filter, discussed in Section 4.4 and proposed by Gelernter 
[10]. It uses analytical geometry to reject false goals through simple numerical 
computations. 

In the second type the filter is not a model. As examples we have the uniqueness 
filter, the nonprovable filter and the DC filter. 

The uniqueness filter prevents looping by allowing each subgoal to be attempted 
only once in a branch. It is inserted in the following procedures: equal angles, equal 
segments, parallel lines and congruence routines, and only in these since all other 
procedures necessarily use them. 

The nonprovable filter, discussed in Section 5.4, recognizes nonprovable goals, 
previously stored by clauses which record failures. It is inserted in the equal angles and 
equal segments procedures. 

The DC (dircct congruence) filter rejects undesirable pairs of congruent triangles, 
not caught by the diagram filter: isoscelles triangles, already proved congruent triangles, 
and identities. It is therefore inserted in the direct congruence routines after the 
diagram filter. The DC filter is a part of a more sophisticated one, the CONFILTER, 
used when the bottom procedure is activated. The CONFILTER is also able to avoid 
the generation of collinear points for a triangle. 

6.3. SUBGOAL CONTROL 

GEOM has two facilities for subgoal control, which are summarized by two situations: 

(1) remembering proved subgoals, and 
(2) remembering subgoals which failed. 

An example illustrates these facilities and its deficiencies, and the need for a better 

interpreter [14]. In this example, the subgoal is to establish two congruent triangles, 
and three methods are available (Side-Side-Side, Side-Angle-Side, Side-Angle-Angle) 
(see Figure 18). 

Thefirst situation arises when goal S1 = S'I is finally proved, in the context of the 
SSS strategy. One would like the established fact S1 = S'I to be stored so that it may 
be used in the context of the two other strategies (SAS and SAA) for proving triangle 
congruence. Briefly, we would like information to be passed from one branch of the 
search tree to another. The mechanism for doing this has to be made explicit by the 
user in his program, as it is done in GEOM. 

The second situation arises when the attempt to prove a subgoal fails, as with the 
subgoal $3 = S'3. One would like to have this information available in the other two 
branches (SAS and SAA) of the search tree, so that no further attempt to prove it need 
be made. It is up to the Prolog user, however, to provide the mechanism for storing 
and retrieving such information. This mechanism is implemented by two devices: the 
nonprovable filter and the record failure clauses, placed at the top and at the bottom 
of equal angles and equal segments procedure, respectively. 
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(2) 

Remember 
Success 
S1 = S'I 

. . . .  . r . .  

of trlangles 

Fig. 18 Cases of sub-goal control. 

6 4. GOAL CONTROL 

Each time a lemma is asserted in the data base, the program may ask whether it is 

identical to the goal it is trying to prove. I f  the answer is yes, the program stops with 
a successful proof. This goal may be the top goal or any other subgoal, and it may 

be possible to infer it by transitivity performed on the data base. 
Two situations, though not considered in GEOM,  regarding the control of  goal 

statement generation are discussed: 

(1) the goal statement is generated by an procedure; and, 
(2) the goal can be infered by transitivity from the data base. 

The discussion is motivated by two deficiencies of  GEOM.  
The first situation concerns the possibility of  a program recognizing that a 

derivation has proved its goal statement and stoping execution. Each time a new fact 
is proved, by say the congruence procedure, it would only be asserted and added to 
the data base if it is not the goal statement (Nevins [13]; Welham [18, 19]). 
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The second situation concerns data base management and relational inference. 
Consider the example: 

GIVEN FACT: AB = CD 

GOAL: CD--- EF 

When the fact AB = EF is proved and asserted in the data base, the structure of related 
equal segments (RESO) contains the information that the goal statement is proved by 
transitivity: 

AB = CD = EF 

and no further search is necessary. However, the GEOM data base has no capability 
to relate the fact CD = EF, to the goal CD = EF, and the search goes on. 

7. Suggested Clues for Further Work 

Some aspects are discussed, suggesting further research directions for the develop- 
ment of a geometry theorem prover. The main aspect is the improvement of Prolog 
system itself. Other aspects focussed are alternative proofs of a theorem, storing and 
using proved theorems, the uses of symmetry and the automatic generation of 
diagrams. These accessory aims are intended as a sophistication of the program for 
geometry theorem-proving, and not as an enlargement of  its geometry domain. 
Enlargement of this domain would be done for instance by the addition of knowledge 
about proportions. 

7.1. ALTERNATIVE PROOFS OF A THEOREM 

Two points arise when discussing the generation of alternative proofs of a theorem: 

(!) the organization of  geometric knowledge, and 
(2) the difficulty in using diverse overall strategies. 

Thefirst point is concerned with the organization of  the geometric knowledge (axioms 
and theorems) in the program: the ordering of  the clauses for each procedure. The 
ordering for equal segments is particularly critical and determines not only different 
searches but combinatorial explosions, mainly because GEOM has a construction 
facility. Figures 19, 20, 22, and 23 picture the close dependence between the proofs 
of PRi3 and PRI4 and GEOM organization (GEOM1 is a version of GEOM with 
no difference of segments clause in the equal segment procedure). Figure 21 shows 
another proof  for PR13 done by program G [18, 19]. 

For PRI3 we only need three clauses for equal segments procedure ($4, $8, S10), 
but GEOM has no possibility to detect it. Instead, it uses every clause in a depth-first 
way. Figures 19 and 20 illustrate one disadvantage of the depth-first search, as the 
methodic pleasure of  a burocrat proving a unnecessary fact: AP = CP. 
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Fig 19, The proof tree of problem 13 generated by GEOM 
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~ TY OF EQUAUTY 
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Fig. 20. The proof tree of problem 13 generated by GEOM 1. 
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F=g. 21+ The proof tree of problem 13 generated by G. 
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I.,~..EAD: .,~CAD ] TRANSITIVITY- OF- EOIJALITY 

~ DIFFERENCE OF SEGMENTS 

' IL . ; o i  

1"o"4 ! o,~ I 
Fig. 22 The proof tree of problem 14 generated by GEOM. 

The second point is concerned with the lack of  different overall strategies, either in 
GEOM or in Prolog, inbuilt but selectable. This point may be solved by two 
approaches: 

(1) the addition of more theorems to GEOM; and 
(2) the implementation of  a new inference system, Earley deduction, in order to 
explore differently the body of geometric knowledge of GEOM.  

For thefirst approach it would be more interesting to have specific knowledge on how 
to use the existing theorems than to add new geometry theorems, i.e. more control 
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Fig 23 The proof tree of problem 14 generated GEOM 1 
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clauses. One approach is the identification of patterns which call for special 
constructions. 

Constructions have been discussed as a facility for proving equal segments or equal 
angles by congruent triangles (see Section 5.4.). Those constructions, line segments, 
where done for achieving a certain subgoal, and erased afterwards. 
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A construction pattern, the parallelogram. 

Let us consider an example to illustrate what we mean by a construction pattern. 

GIVEN: triangles ACB and ADB are equal and on opposite sides of AB; 
TO PROVE: M is the midpoint of CD. 
CONSTRUCTIONS:  draw AE parallel to BD; 

BE parallel to AD; 

join EC, ED, CD. 
PATTERN: parallelogram AEBD 

For this example, the pattern is a parallelogram, created in the diagram by means of 
constructions. The new elements make explicit more information (relations in the 
diagram (model), which are not contradictory with the hypotheses. The new relations 
induced short cuts in the search space of  the problem and in some cases help to fill 
in gaps in the proof. The pattern may be viewed as a tactic to help a strategy. 

The second approach, the implementation of a new inference system from scratch 
proposed by Warren (Pereira and Meltzer [14]) is discussed in Section 7.5, concerning 
the overall improvement of Prolog. 

7.2. STORING AND USING PROVED THEOREMS 

Storing and using proved theorems is a matter of interest for further developments of 
a geometry theorem-prover. This interest suggests one of the reasons for having a 
more complete separation between logic and control, because we would like to add 
the new theorem without having to specify within it any control. 

We may consider this problem as more complex than the mechanism for remember- 
ing proved subgoals (lemmas), already implemented in GEOM, and discussed in 
Section 6.3. Now, we are interested in storing clauses instead of unit clauses. The 
complexity arises when clauses describing theorems contain the information on how 
to use them, i.e. logic and control are mixed. On the contrary, the problem becomes 
simpler when a complete separation is made. Thus, the logic of the theorem may be 
the only component to be stored. New theorems would be used by the already existing 
control. In Section 6.1 the separation between logic and control was discussed, and 
examples were given on how this problem was tackled in GEOM. 
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7.3 THE USES OF SYMMETRY 

The uses of symmetry in geometry theorem-proving are based upon two fundamental 

types of symmetry: 

(1) syntactic, and 
(2) geometrical. 

Syntactic symmetry is general and it may be applied to any formal system. Consider 
the formal system of plane geometry and the set of hypothese of problem 6: 

ES(AB=AD)  

ES(BC = DC) 

If we exchange B with D in each unit clause, we get the same set of clauses: 

ES(AD = AB) ES(DC = BC) 

and we may say that problem 6 has a syntactic symmetry, which makes the set of 
hypothese invariant under the syntactic transformation: B ( - ) D .  

The predicates of geometry exhibit a high degree of  symmetry and by discovering 
syntactic transformations one can manage to reduce the computing effort of a 
geometry theorem-prover. Gelernter [8, 9] was the first researcher to recognize the 
power of syntactic symmetry and he proposes two uses: 

(I) a negative one - for pruning subgoals which are syntactic variants of subgoals 
already tried without success; and 

(2) a positive one - by establishing subgoals which are syntactic variants of other 
already proved subgoals, since their proof  would simply be a syntactic variant of 
an already existing proof  (mathematician's do it by saying 'similarly'). 

Gelernter's symmetry is not calculated by his program. On the contrary, it is declared 
by the user by observing the geometric diagram. A combinatoral problem was thus 
avoided for geometric problems with a large number of points (e.g. 10). Afort iori ,  a 
dynamic use of this symmetry is not explored in his program. In GEOM a single use 
of syntactic symmetry is implemented, through canonical naming. It handles the 
permutation on the names of the syntactic variables in unit clauses, as discussed in 
Section 3.5. 

Geometrical symmetry is the arrangement of the points of a figure into pairs of 
points (where a point may pair with itself). It is also a syntactic symmetry. 

A study of this symmetry was developed by L. M. Pereira, on making a Prolog 
program, called SYMM,* which is capable of finding partial and complete line 

symmetries of a geometry problem. 
SYMM may calculate this symmetry for problems defined either with a diagram 

or without it. SYMM may be inserted in GEOM and be a good guider of the 
search. 

* A listing of program SYMM will be sent upon request. 
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Fig. 25. Symmetry rule IT. 
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SYMM has 8 rules of line symmetry, implemented in procedure LSYMM. We only 
consider the following ones, as examples: 

RULE IT: 
point U is symmetric relatively to pair XY (X different from Y) if 
there is some known a pair X1YI symmetric relative to pair XY, and point XI is 
different relative from point YI, pair UXI equals pair UY1 (see Figure 25). 

RULE 8T: 
point U is symmetric to pair XY if 
there is a pair XIY1 symmetric to pair XY, there is a point Z symmetric to XY, point 
Z is different from point X1 or Y1, and angles < UZYI and < UZYI are equal. 

RULE 3T: 
pair UV is symmetric to pair XY if 
point U is different from point V, there is a pair X1YI symmetric to XY, point XI 
is different from point YI, direction from XI to YI is different from directions U to 
V and V to U, angles < UX1YI and < UYIX1 are equal, and direction XI to Y1 is 
parallel to direction U to V (see figure 26). 

RULE 4TC: 
pair UV is symmetric to pair XY if 
point U is different from point V, there are two pairs ZW and X 1Yl symmetric to pair 
XY, point XI is different from point Z, directions X1 to W and W to V are the same, 

X Y 

I i 
t B E  I 

U - -  ~ ~ ~ V  
G A  A L  

Fig. 26. Symmetry rule 3T. 



GEOMETRY THEOREM PROVING WITH PROLOG 

V 

363 

Vl 
y ~  . . . .  

BE "--0 

U 

Fig 27. Symmetry rule 4TC 

directions Y1 to Z and Z to U are the same, and pair UZ equals pair VW or pair UY1 

equals pair VXI (see figure 27). 
Now let us reconsider problem 6 to show how SYMM works. SYMM gives a 

partial symmetry through the application of rule IT, to points A and C: 

AC is a line of  symmetry 

D is symmetric to B 

Further on, it finds a complete symmetry through the application of rule 8T to point 

E: 

ACE is a line of  symmetry 

This symmetry could only have been proven after the previous one. Similarly, any 

symmetry proof  depends on the availability of  needed facts. Thus, a certain symmetry 
may not be possible to prove at a given stage but may be possible to prove later on. 

This points to a dynamic use of  symmetry. 
Following the proof  of  problem 6, we envisage the use of  geometrical symmetry for 

guiding the search by providing the appropriate congruent triangles even when there 

is no diagram for helping with the coordinates. 

When we look at a diagram, the recognition of geometrical symmetries helps us to 
sketch a plan and to direct our proof  of  a theorem: to structure the proof  and to 
re-arrange its pieces of  reasoning. In a way, geometrical symmetry is viewed as a 

higher level concept giving global information, which allows the increase of  

directionality and the decrease of  search. 
But how can this be used in GEOM? For PR6 the existance of line symmetries gives 

us a straightforward way for concluding more facts about the equality of  angles and 
sides: the goal ES(BE = DE) may be immediately asserted by symmetry. However, 
this is a unfair proof! 

Of  course, one could use SYMM as a device for pruning, but we would like to use 
it in a more positive way. We envisage SYMM as a hunch given and not as the basis 
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for a proof. Thus, what is desired is to find its function as a control device, a kind of 
'strategist'. 

7.4. THE GENERATION OF A DIAGRAM 

With the given hypotheses how is it possible to generate a diagram? 
A diagram (model) is one particular interpretation of the given hypotheses (the 

hypotheses define a family of diagrams), which can be used as a counter-example 
during the proof. 

One may consider the automatization of  the task of generating a diagram, instead 
of having to give a set of points and its coordinates. This generation may be viewed 
either as static, done before the proof, or as dynamic, done during the proof  as 
needed. 

Let us consider only the static generation of  a diagram, analysing, as an example, 
the protocol of  a subject for problem 6: 

(1) pick up the first element of LINES, BE; 
(2) check if BE (or EB) is present in any given relation; 
(3) generate a value for B; 
(4) generate a value for E; 
(5) pick up a second element of  LINES, DE; 
(6) check if DE (or ED) is present in any given relation; 
(7) generate a value for D; 
(8) do not generate a value for E, because it exists already; 
(9) pick up the third element of  LINES, ACE; 

(10) check if AC (or CA) is present in any given relation; 
( l l )  check if CE (or EC) . . . ; 
(12) check i f E A ( o r A E ) . . . ;  
(13) generate a value for A . . . ; 
(14) generate a value for C, noting that A, C and E must be on the same straight line; 
(15) pick up the fourth element of LINES, AB; 
(16) check if AB (or BA) . . . ; 
(17) as AB = AD, A must be located on a straight line crossing the midpoint of 

BD; 
(18) re-check the values generated for A, B and D in order to be adjusted to 17); 
(19) generate a new value for A; 
(20) generate a new value for C, noting 14); 
(21) pick up the fifth element of  LINES, AD; 
(22) check if AD (or DA) is present in any given relation, and if AD (or DA) was 

already used jump to the following pick up; 
(23) pick up the sixth element of LINES, CB; 
(24) check if CB (or BC) . . . ; 
(25) as BC = DC, C must be located on a straight line crossing the midpoint of BD; 
(26) re-check the values generated for B, C and D in order to adjust to 25); 
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(27) pick up the seventh element of LINES, CD; 
(28) check if CD (or DC) . . . and if CD (or DC) was already used jump to the 

following pick up, if it exists; 
(29) no more elements in LINES: STOP. 

With this sequence of tasks one may derive an experimental algorithm, and refine it 
with more protocols. For the programming of this we may consider two points: the 
construction of lists of points (during the process abstract values are generated for the 
coordinates) and the use of symmetry to guide the generation of the diagram. 

7.5. THE IMPROVEMENT OF PROLOG 

Our experience with problematic situations, detailed in Sections 6.2 and 6.3, motiv- 
ated the need for a more sophisticated predicate logic interpreter. This sophistication 
will be achieved mainly through the improvement of Prolog's operational semantics 
(proof procedure), which will provide more powerful facilities. These facilities will 
free Prolog users from having to provide special 'mechanisms'. Better and clearer 
programs will be written. 

A proposal for a new inference system was done by Warren (Pereira and Meltza 
[14]), on the implementation of an efficient predicate logic interpreter based on Earley 
deduction (ED). The ED is a top-down proof procedure, analogous to Earley's 
algorithm for parsing context-free languages, and it uses simple instantiation as a rule 
of inference in addition to resolution. This improvement will provide complete 
satisfaction for the three problematic situations already discussed: automatically 
avoiding loops, storing proved facts, and remembering goals which failed. 

Let us examine how ED deals with the three problems, discussed in sections 6.2 and 
6.3. The example shown in Figure 18 is now revisited with the help of Figure 28. 

In Figure 28, we have the same top goal as before (to prove TI and T2 congruent). 
However, when the SSS method is tried out, subgoal T1 = T2 is rejected since it is 
subsumed by the top goal, subgoal $2 = S'2 is stored as a lemma after being proved, 
and subgoal $3 = S'3 (which could not be proved) becomes an already activated 
subgoal. Thus, when trying the other two methods (SAS and SAA), enough 
information is available for rejecting $3 = S'3 as a subgoal to be pursued, and for 
solving $2 = S'2 straightaway since it has been previously stored as a lemma. 

Other improvements over Prolog system are envisaged, such as associative memory, 
space saving and compilation instead of interpretation. Earley deduction will require 
large data bases and further studies on their management will be carried out. This line 
of research will no doubt enlarge the increasing number of Prolog applications. 

8. Conclusions 

In this section we shall briefly review some of the issues that have been explored: 

(1) The representation of geometric primitives. 
Flexibility and generality are achieved by the concepts of equivalence class and 

canonical naming. Representation of angles by directions is prefered_ 
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$3 S'3 
S2 = St2 

Angle 
Angle 
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already activated subgoal 

[.emma 
s2 = s,2 <~ 
is stored 

The sub-goal control example revisited�9 

. ~  Remenbered 
: i q . . . . .  I t "m~  

is rejected m 
candidate ~ ?  

(2) The uses of a geometric diagram as a model. 

Two uses of  a diagram are made: as a filter (it acts as a counterexample), as a 
guide (it acts as an example). 

(3) The introduction of  new points. 

The introduction of new points to make explicit more information in the 
diagram and to create, for certain cases, shortcuts or new paths, which diminish 
the steps of a proof. 

(4) Shallow top-down breadth search versus depth-first search for the congruence 
procedures. 

To suspend the selection of new subgoals until more information, perhaps 
already present in the data base, is searched for, by means of  a shallow breadth 
search for each of the congruence procedures. 

(5) The introduction of constructions. 
A construction facility (doing, not doing and undoing) for missing segments, 

when proving that two segments are equal, as corresponding parts of congruent 
triangles. 

(6) The data base and its access. 

Structuring and accessing the data is achieved through two concepts: the 
equivalence class and canonical naming. 

(7) Top-down versus bottom-up. 
The mixture of top-down with a shallow bottom-up which only explores 

consequences of the given data, in what concerns the triangle congruence relation. 
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(8) The uses of transitivity. 
Two uses of transitivity are implemented: the implicit one - where transitivity 

is obtained for free, on account of  the use made of equivalence classes - and the 
usual explicit one. 

(9) The separation between logic and control. 
Separation between logic and control is possible and desirable in Prolog 

programs, as in GEOM. Two immediate advantages: 1) the storing of proved 
theorems independently of how they will be used; 2) the use of logic clauses in 
different ways, according to the control clause. 

(10) The use of geometrical symmetry. 
Geometrical symmetry can give global information about the problem or its 

symmetric parts. It can be used for pruning and directing the search, especially 
if no diagram is provided. Other uses of symmetry have yet to be explored. 

(11) The need for a more sophisticated predicate logic interpreter. 
The work on geometry theorem-proving points to an improvement of the used 

language, Prolog. The main improvement would be the implementation of an 
efficient predicate logic interpreter, based on Earley deduction. This improve- 
ment would provide complete satisfaction for three general problematic situations: 
avoiding loops, storing proved facts, and remembering goals which failed. 

(12) The widening of Prolog applications. 
Earley deduction and other improvements on Prolog, such as data base 

management, will help the use of a language based on FOL in a large and 
complex domain. 
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Appendix I. A Sample of the Problem Collection 

-SORCHA("PROBLEM 5 
+DIAGRAM. 

GELERNTER,5"). 

-A(O,O) . 
-B(12,0) . 
-C (4,2) �9 
-D (2,2) . 
-E (2,1) . 
-F (7 ,1 ) .  
-K (10,0) .  
-M(1, i ) .  

+FIN. 

+LINES(AKB.BC.CD.DMA.AEC.DFB.MEF.CFK). 

+PR (AB. DC). 
+MIDPOINT (E,AC). 
+MIDPOINT (F,BD) . 

+GOAL. 
-MIDPOINT (M, AD). 

C 
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-SORCI{~ ("F'ROI.~LEM 6 
+DIAGRfiM. 
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GOLDSTEIN, I" ). 

-A(O,4) . 

-[~ ( 3 , 8 ) .  
-C (4,4) . 

-D ( 3 , 0 ) .  
- E ( I O , 4 ) .  

+FIN. 

+L I NES (ICE. DE. ACE. AB. AD. CB. CD). 

+ES (AD:-AD). 
+ES (BC=DC). 

+GOAL. 
-ES (BE:DE). 

/:,, 
C E. 

2) 
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-SORCHA (" F'ROBLEM 13 NEVINS,2"). 

+DIAGRAM. 

-N (0,2) . 
-Q (2,2) .  
-R (3,2) . 
-D(6,2) 
-A(3,8) 
-B(O,6) 
-C (3,0) 
-F' ( :1 ,4 )  
-S(3,6) 

+FIN. 

+L I WE S (AB. BN. APN. NQRD. BF'QC. CRSA. SB. DA. CD). 

+RECTAr4GL[ (NBSR). 
+F'AR~d_LEL'OGRAM (ABCD). 

4 GOhL, 
-ES (PB=['Q). 

A 

e, 

N 

P 

Q 

5 

R 

C 
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-SORCHA(OF'ROBLEM 14 
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NEVINS,4"). 

+DIAGRAM. 

-C (0,0).  
-A (30,0) . 
-B (24,12) . 
-'M (27,6) . 
-N (22,6) . 
-D(12,6). 
-E (18,9). 

+FIN. 

+LINES(BEDC.CA.AMB.ANE.DNM.AD). 

+MIDF'OINT(D,BC). 
+MIDF'OINT(E,BIi). 
+ES(BB=BA). 
+PR(DM.CA). 

+GOAL. [~ 
-E~ (EAD=CAD). 

1,4 
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Appendix 2. Solutions Given by G E O M  for the Same Problem Collection 

PROBLEM 5 GELERNTER, 5 

GIVEN LINES* AKB, BC ~ CD ~ DMA, AEC, DFB, MEF, CFI{ 
GIVEN AB PARALLEL TO DC 

GIVEN E MIDPOINT OF AC 
GIVEI~I F MIDPOINT OF BD 

READY 

~'i IS MIDPOINT OF AD TO .... BE .... PROVED 

PRGOF~ 

TOP-DOWN SEARCH, ~ 

<DFC = <BFK 

DF=BF 

<CBF = <I<BF 

THEREFORE~ TRIANGLE DFC CONGRUENT TO TRIANGLE BFI{ 

THEREFORE~ 
FC=FK BY - CONGRUENT - TRIANGLES 

IDENT]~TY 

BY - MID - POINT 

PARALLEL - OR "' ANTIPARALLEL - SIDES 

ASA 

F iS i"ilDPOINT OF" CK 

E iS i'~IDPOINT OF CA 

EQ ' SIDES 

DATABASE 

THEREFORE;."; AK PARALLEL TO EF BY TWO MIDPOINTS IN TRIANGLE AKC 

A~\\I)C DATABASE 

AK\\FiE PROVED 

THEREFORE* 
HE\\DC BY - TRANSITIVITY - OF - PARALLELISM 

ME\\DC PROVED 

E iS MIDPOINT OF AC DATABASE 

THEREFORE* 

THEREFORE ~ 

AM=MD, 

i"i IS THE MIDPOINT OF AD BY BISECTION OF THIRD SIDE 
IN TRIANGLE ADC 

BY -' HID " POINT 

Q~E.D° 
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PROI:LI.'tl 6 

GIVEtl E.INEC.; : 

AE~::AD 

BC=IIC 

READY 

HELDER COELHO AND LUIS MONIZ PEREIRA 

.JU[.DbT .F ~.~I, :I 

~.:E, DC : ACE, AE~ ,AD. C~':. CI" 

GIVEN 

GIVEN 

BZ=DE TO - BE - PROVED 

PROOF: 

TOF'~DOWN SEARCfI: 

CA=CA IDENTITY 

AB=AD GIVEN 

BC=DC GIVEN 

THEREFORE: TRIANGLE CAB COtIGRUENT TO TRIANGLE CAD 

THEREFORE: 

(EAB = (EAD BY - CONGRUENT - TRIANGLES 

EA=EA I DENT I TY 

(EAB = {EAD PROVED 

AB=A[! G IVEN 

THEREFORE: TRIANGLE EAB COUGRUENT TO TRIANGLE EAD 

THEREFORE: 
BE=DE BY - CONGRUENT - TRIAUGLECJ 

Q.E,D.  

SSS 

SAS 
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PROBLEM 13 NEVINS,2 

GIVEN L. INE~ ~ AB, BN ~, APN J, NQRD 5, BPQC, CRSA, SB, DA, CD 

GIVEN RECTANGLE. ~ NBSR 

GIVEN PARALLELOGRAM: ABCD 

READY 

375 

PB=PQ TO " BE ,. PROVED 

PROOF: 

BOTTOM-UP SEARCH FOR BO-AD 

CB=AD 

BA=DC 

AC=CA 

SIDES "- OF '" GIVEN .- PARALLELOGRAM 

SIDES - OF ~ GIVEN - PARALLELOGRAM 

IDENTITY 

TOP-DOWN SEARCH ~ 

AR=CS 

<ARN= <CSB 

RN=SB 

THEREFORE: TRIANGLE ARN CONGRUENT TO TRIANGLE CSB 

CONGRUENT - TRIANGLES 

TRANSITIVITY 

SIDES " -  OF - GIVEN .- RECTANGLE 

~AS 

THEREFORE~ TRIANGLE CBA CONGRUENT TO TRIANGLE ADC SSS 

<CBS = <ADR SUPPLEMENTARY - ANGLES 

CB=AB SIDES - OF - "  GIVEN - PARALLELOGRAM 

<SCB = <RAD CONGRUENT - TRIANGLES 

|HERIEFORE* TRIANGLE CBS CONGRUENT TO TRIANGLE ADR ASA 

BOTTOM-UP SEARCH FOR AB-CD 

<ADS = <CDR SUPPLEMENTARY ,, ANGLES 

AB=CD SIDES .... OF: - GIUEN " PARALLELOGRAM 

<SAD = <RCD SUPPLEMENTARY - . .  ANGLES 

THEREFORE.,. TRIANGLE ADS CONGRUENT TO TRIANGLE CDR ASA 

BOTTOd..UP SEARCH FOR BS'.-NR 

BOTTOM-UP SEARCH FOR BN-RS 



3 7 6  

THEREFORE: 
<PAC = <PCA 

HELDER COELHO A N D  LUIS MONIZ PEREIRA 

BY . . . .  CONGRUENT . . . .  TRIANGLES 

<PAC = <PCA 

THEREFORE ~' 
AP-~Cp 

AS=CR 

<ASB = <CRN 

SB=RN 

PROVED 

THEREFORE: TRIANGLE ASB CONGRUENT TO TRIANGLE CRN 

THEREFORE: 
BA=NC BY -'- CONGRUENT -' TRIANGLES 

BA=NC PROVED 

AC=CA IDENTITY 

CB::::AN CONGRUENT - TRIANGLES 

THEREFORE: TRIANGLE BAC CONGRUENT TO TRIANGLE NCA 

THEREFORE ~ 
CB=AN BY - CONGRUENT .... TRIANGLES 

CB=AN PROVED 

BN:=~B IDENTITY 

NC=BA CONGRUENT .... TRIANGLES 

THEREFORE: TRIANGLE CBN CONGRUENT TO TRIANGLE ANB 

THEREFORE~ 

<F'BN := <PNB BY ""' CONGRUENT .... TRIANGLES 

OPPOS .- SIDES - ISOS 

CONGRUENT - TRIANGLES 

TRANSITIVITY 

SIDES - OF -- GIVEN -- RECTANGLE 

SAS 

SSS 

SSS 

<PBN = <PNB 

THEREFORE ~ 
PB=PN 

PROVED 

OPPOS - SIDES '-' ISOS 

<PNO = <i-~DN 

<PQN = <ADN 

TRANSITIVITY 

RARALL.EL . . . .  OR . . .  ANT[I:?nRALLEL . . . .  SIDES 
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TI-IE REF:OI:~ E : 
I:::PQN ::;: { P N Q  TRFI~NS:I:T:I :V:I :TY I I I [:IF I I I  I E O U ~ I L : I : T Y  

<PQN = <PNQ 

THEREFORE ~ 

PQ=PN 

I;:'ROUI-~] 

O F F O S  .-. ! : ; I I ,~ES - 1 S O S  

PQ=PN 

PB=PN 

THEREFORE~ 

PB=PQ 

PROVED 

PROVED 

TRANSITIVITY -,, OF - EQUALITY 

Q.E°D. 
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F:'F;:O B L . E M  :1.4 

GIVEN LINES: 
GIVEN D MIDPOINT OF BC 
GIVEN E MIDPOINT OF BD 

BD=BA 

GIVEN DM PARALLEL TO CA 
READY 

HELDER COELHO AND LUIS MONIZ PEREIRA 

NEVINS,4 

BEDC, CA, AMB, ANE, DNM, AD 

GIVEN 

<EAD ::: <CAD ' [ 0  " BE - PROVED 

PROOF: 

TOP-DOWN SEARCH ~ 

MDX\AC 
D I~; MIDPOINT OF BC 

DATABASE 
DATABASE 

THEREFORE, ~ 

THEREFORE: 
BM:.'.:MA 

M IS THE MIDPOINI OF .BA BY BISECf"]:Oi-~ []F: THIRi) ~i~]iDii[. 
IN T'RIANGI_E BAC 

!']Y "'- Mil] ' - '  F'OIHT 

BA.=BLi 
M IS MIDPOINT O F  BA 
E IS MIDPOINt O F  BD 

THEREFGRE ~ 
HB=ED 

GIVEN 
PROVED 
DATABASE 

I i A L < . . ' i i . ' i : ;  "-' Oi:: '"" E Q  .... S E G ~ ' ~ E ~ ' . i i ' S  

MB=EB 

AB=DB 

THEREFORE~ : 
MA=ED 

PROVED 

GIVEN 

DIFFERENCE .... OF - SEGMENTS 

BA=~BD G ] :...:E F1 
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THEREFORE ~ 

<MAD := <EDA 

MA=ED 

• (HAD =: <EDA 

AD=DA 

BASE .... ANGLES - .  ISOS 

PROVED 

PROVED 

IDENTITY 

THEREFORE; TRIANGLE MAD CONGRUENT T(:) FR]ZANGLE EDA 

THEREFORE; 

~'aN=AE B Y  "-- CONGRUENT - '  TRIANGLES 

NA=ED TRANS]ITIVITY 

<AN~I = ":::ONE VERTICAL -.- OPPOSITE -. ANGLES 

<NMA := -:::NED CONGRUENT -- TRIANGLES 

THEREFORE; TRIANGLE NAN CONGRUENT 1O TRIANGLE EDN 

THEREFORE; 

NH=NE B Y  -" CONGRUENT .... TRIANGLES 

3 7 9  

SAS 

SAA 

NH~:NE PROVED 

DH=AE PROVED 

THEREFORE ~ 
N D = N A  D I F F E R E N C E  .... OF - -  S E G H E N F S  

N D = N A  

THEREFORE~ 
• - ' , ' . 'NI I ; : l  :::: "-:.'EIqD 

PROVED 

BASE .... ANGI.ES .... ISOS 

<CAD := <NDA 

<EAD .... <NDA 

THEREFOREt 

,::lEAD = <CAD 

P A R A L L E L  .... 01 :5  .... A i " ! T  I P A R A L L E L  .... S I D E S  

P R O V E O  

TRANSITIVITY ..- OF .... I{QUALIIY 

Q,EoD~ 
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