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1. Introduction

We describe the development of GEOM, a geometry theorem-prover, with the
objective of achieving a better understanding of the capabilities of Prolog as a tool for
automated reasoning in this ‘classical’ AI domain.

The paper is divided into 8 sections which cover three main aspects: the definition
of the problem domain, the points of friction found, the directions suggested for
further research, and conclusions. We add a comparative survey of some previous
work in geometry theorem proving.

We begin with the motivation inherent to our work. For each section, an intro-
duction covers briefly the topics discussed. Section 3 presents the problem collection
and the representation chosen for the basic geometric primitives. Section 4 details the
program’s knowledge. Section 5 discusses difficulties encountered and how they were
coped with. Section 6 introduces the advantages of the separation between logic and
control and how this distinction was partly implemented in GEOM. Section 7
contains directions of research suggested for further work, such as the improvement
of the programming language itself. Section 8 puts forth our conclusions.

GEOM is a Prolog program that generates proofs for problems in high school plane
geometry. It is divided into modules which cover geometric and arithmetic know-
ledge, the printing and assertion facilities and the utilities.*

* A listing of the program GEOM written in the Edinburgh standard notation will be sent upon request.
However, along this paper we used the old syntaxe available with the Prolog written in FORTRAN IV
developed at Marseille, where literals have ‘+° or * —’ according to whether they are positive or negative.
Infix operators are used, and variables are preceded by ‘s’
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This organization allows easy reading, understanding and fast updating of the
program. A user presents problems to GEOM by declaring the hypotheses, the
optional diagram and the goal (see Appendix 1). GEOM starts from the goal,
top-down and with a depth-first strategy, outputing its deductions and reasons for
each step of the proof (see Appendix 2).

This work extends previous work done by Gelernter [8, 9, 10], Rochester [8],
Gilmore [11], Reiter [15], Goldstein {12], Nevins [13], and Welham [19]. Recently other
work has been presented by Anderson [1, 2], Fearnley-Sandor [7], and Wen-Tsun
[20, 21]. Basically, the following research question were examined:

(1) the mixture of chaining backward (top-down) and forward (bottom-up);
(2) the separation between logic and control;
(3) the introduction of new points;
(4) the introduction of line segments (constructions);
(5) the uses of a diagram;
(6) the use of geometrical symmetry;
(7) the implicit use of transitivity;
(8) the way of handling congruence relations (equivalence classes);
(9) the use of a language based on predicate calculus in a large and complex domain;
and,
(10) non-proved goals in the context of constructions made.

2. Motivation

This research was mainly oriented to achieve a better understanding of the capabilities
of Prolog, a programming language based on first order logic or predicate calculus,
as a tool for automated reasoning. To do so so we chose a specific domain, elementary
plane geometry, and we analysed how Prolog could cope with the construction of a
geometry theorem-prover. Some deficiencies and limitations were found, suggesting
improvements of Prolog.

Geometry theorem-provers have been attempted at times, as an exploration field
during the first 16 years of Artificial Intelligence. Later on [1, 2], proving a theorem
in geometry was used also to develop intelligent tutoring systems, capable to com-
municate to the student the logical structure of a proof and the structure of the
problem solving process by which a proof is generated.

The difficulties which prevent the development and more general use of a geometry
theorem-prover were stressed in a report on previous work by Coelho [3]. In
Appendix 3 we present a practical guide on the analysis of early studies.

Some general questions were put forward, from the start, such as:

(1) to be attentive to the limitations and possible developments of Prolog while using
it for writing a geometry theorem-prover;

(2) what geometric knowledge was needed for a collection of problems selected from
previous work on geometry theorem-provers;
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(3) how to have in a program a useable map of geometric knowledge.

Later on, other questions were added:

(4) how to formulate the problem: the choice of representation and canonical
naming;

(5) how to identify construction strategies from known geometric constructions used
in text books.

Besides these starting questions, other ones were introduced during the research,
defining subgoals which are described in Sections 5 and 6.

3. Problem Formulation

The types of problem suitable for our geometry theorem-prover are here presented,
by means of the description of the statement of a problem and by an example. Details
are given of the representation chosen for the basic geometric primitives and the
choice of a canonical naming method, i.e. how to define a unique fixed name for the
geometric objects.

The representation and canonical naming have a particular influence on computation
time. Moreover, further developments of GEOM will also depend importantly on
how basic geometric primitives are manipulated if each time a new fact (or lemma)
is derived it is desired to stored it in the data base. Also, during the proof it is often
necessary to retrieve an already proved fact from the data base. Storing and retrieving
huge amounts of derived facts, not always useful, may lead to combinatorial problems
which must be harnessed.

3 1. THE STATING OF PROBLEMS IN GEOMETRY

The statement of a problem in geometry is done by its (optional) diagram, the
hypotheses and the goal.

The geometric diagram is a set of points, defined by their cartesian coordinates. Its
declaration is optional for the user of GEOM with minor changes to the program;
when it is given it aids in the proof of the goal. However, the diagram is only a
particular case of a whole class of geometric figures for which the problem (theorem)
in question must be true. The diagram works mostly as a source of counter-examples
for pruning unprovable goals, and so proofs need not depend on it: a proof of a
theorem can be carried out without the use of a diagram. However, the diagram may
also be used in a positive guiding way as described in Section 4.3

There are nine predicates with which to express the hypotheses of a geometry
problem:

(1) the basic ones are
LINES

PR(parallel segments)
ES(equal segments)
EA(equal angles);
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(2) the convenient high-order ones, definable in terms of the basic ones above,
are

RA(right angles)

RECTANGLE

SQUARE

PARALLELOGRAM

MIDPOINT

There are seven predicates to indicate the top possible goals:

(1) the basic ones are
PR, EA, ES

(2) the convenient high-order ones, definable in terms of the basic are
RA, CONGRUENT, PARALLELOGRAM, MIDPOINT

3.2. EXAMPLE OF A PROBLEM SPECIFICATION

A geometric problem becomes defined by the optional diagram (cartesian coordinates),
the hypotheses and the goal.
Let us take an example from Gelernter [10], used as input to GEOM:

DIAGRAM:
A(0,4) B(2,0) C(8,8) D(2,4) E(8,4) M(5,4)

HYPOTHESES:
LINES(AB,BMC,CA,ADME,BD,CE)
MIDPOINT(M,BC)

RA(ADB) RA(AEC)

GOAL:
ES(BD =EC)

3.3. THE PROBLEM COLLECTION

The problem collection was built with problems from previous work:

problem
problem 1

: Goldstein [12] problem 4
: Goldstein [12] problem 5

problem 1: Gelernter [10] problem 1
problem 2: Gelernter [10] problem 2
problem 3: Gelernter [10] problem 3
problem 4: Gelernter [10] problem 4
problem 5: Gelernter [10] problem 5
problem 6: Goldstein [12] problem 1
problem 7: Goldstein [12] problem 2
problem 8: Goldstein [12] problem 3

9

0
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B
Fig. |  The diagram of problem 3.

problem 11: Goldstein [12] problem 6
problem 12: Nevins  [13] problem 1
problem 13: Nevins  [i3] problem 2
problem 14: Nevins  [13] problem 4
problem 15: Welham [18] problem |
problem 16: Welham [18] problem 2

The selection of these problems was based upon the ‘degree of difficulty’ of their
proofs, and in order to permit comparison between program characteristics. In
Appendix 1 a sample of this collection is presented. Note that for each problem only
one proof is provided.

3.4. CHOICE OF A REPRESENTATION FOR THE BASIC GEOMETRIC PRIMITIVES

A general and flexible representation for the three basic geometric primitives used —
segments. directions and angles — is needed to encode them, since these primitives form
the basis of any geometric knowledge to be added to the data base. The flexibility and
generality are achieved by the concept of equivalence class, which allows, for example,
that one direction be represented by any other element of its equivalence class. An
angle can be defined by three points or by two directions, as Figure 2 illustrates. A
direction is represented by two points, e.g. DI = A:B, where

DI = B:A is the opposite direction
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A
D1
1)ABC

A—»— B -B ANGLE  2) A:B.EC
AB 3)D1.D2

D2
c D_1=A'.B
D1=BA

Fig. 2. The representation of an angle.

A=2ab
B=ba
c=aB
D=ba

Fig. 3. The four cases arising in the representation of an angle.

Each angle segment becomes defined by two points of its direction. One direction can
be defined by any pair of points belonging to the same equivalence class of pairs. In
Figure 3 we can see the four cases for an angle, less than 180 degrees, defined by two
directions: a and b.

Once we impose a reading direction, e.g. the clockwise direction, we may have only
two cases: angles A and B, i.e. acute and obtuse. In our problem collection we have
only angles less than 180 degrees and no other angles are considered.

3.5. THE CANONICAL NAMING

The canonical naming routines are a set of rewrite rules, applied to an expression, to
get it into some standard format. They reduce the ambiguity resulting from the
syntactic variations of the thin named. In fact, canonical naming is a technique for
overcoming combinatorial problems and to make the data base inquiry easy and fast.
This elimination of redundant searching is also achieved by the data base organization,
as it is explained further on in Section 5.7.

In geometry, combinatorial problems are very common, partly because of transi-
tivity, when equality and congruence relations are involved. For example, if triangle
ABC is congruent to triangle DEF one can store this fact in 72 variations. When
during the proof it become necessary to retrieve that triangle EFD is congruent
to triangle BCA, the fact can be as just one of the possibilities of that set of
variations. This is done with the use of canonical names in the geometric primitives
for segments, directions and angles, i.e. a standard variation representing the thing
named.

For segments, the endpoints are ordered alphabetically. In the following example,
segment CA would be represented as AC. For segment AC, the representation would
be AC itself. The case of an angle, DEH for example, is dealt with in the following
way.
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As D < H the canonical name of angle DEH (i.e. D:E.E:H)is D:E.E:H.

For angle HED, as H > D, the canonical name is not H:E.E:D, but it is
D: E.E:H (there is an inversion of pairs and an inversion of each pair). In fact angles
DEH and HED are the same and, thus, they have the same canonical name.

The case of an angle defined by two directions, D1.D2 (e.g. A: B.C: D) expressed
by different points is dealt in another way. As A is the alphabetical least of four points
A, B,C,D,ie. A < B,A < Cand A < D, the canonical name of angle A:B.C:D
isA:B.C:D.

Now, consider an angle defined by three points (A, B, C) or by two directions. Let
us calculate, for each of these two representations, the number of alternative names
for the angle when there are additional points in the two angle segments:

No. of points RP RD

3 2 4
4 4
5 8 4

RP - representation with points.
RD - representation with directions.

The representation with directions is thus recommended for angles that can be defined
by more than for 4 points.

Canonical naming permits also to assert equal supplement angles when equal
angles are proved. This is a consequence of the chosen representation (directions
instead of points). The representation by points does not allow this.

4. Problem Specification

A brief description of GEOM’s knowledge domain is presented: the geometric
(axioms and theorems for elementary plane geometry) and arithmetic (needed for
using the diagram of points with coordinates) knowledges, the utilities (the procedures
available for special purposes, e.g. procedures to find points or directions) and the
uses of a geometric diagram. This knowledge is sufficient to deal with the geometry
problem domain covered in the previous section.

In GEOM there is a clear distinction between two components of an algorithm
specification, the logic component (what it is required to be solved) and the control
component (how the problem is to be solved). This separation is facilitated in
PROLOG, a more descriptive or high level language than the conventional procedure
oriented ones [6], PROLOG allows the programmer to explain what is the case,
knowing at the same time that he is implicitly specifying to PROLOG how the case
is to be searched for.
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4.1. GEOMETRIC KNOWLEDGE

The geometric knowledge of GEOM, i.e. some of the axioms and theorems of
elementary plane geometry, is embodied in nine procedures. They are: equal angles
(EAI),* right angles (RAI), equal magnitude (EM, EM1), equal segments (ESI),
midpoints (MP), parallel segments (PRI), parallelogram (PG), congruence
(DIRCON) and diagram routines.

The equal magnitude procedures convert angles to their internal represen-
tation before testing for an immediate equality or a data base equality. The midpoint
procedures are of two sorts: the first is dedicated to storing a useful theorem,
relating midpoints and parallels in a triangle; the second is able to generate new
points.

Each procedure is organized to allow for a first look into the data base before any
attempt to prove is made. Thus, for each one, the first clause provides access to the
data base. To facilitate the access to a specific clause (e.g. the case for congruence
routines), each of the clauses of equal angles and equal segments procedures are given
a name, specified as one of the arguments of that clause.

Because each procedure may call itself through others, the search space can grow
quite large, in particular when the clause for differences of segments is used. To avoid
this combinatorial problem, Golstein [12] and Welham [18, 19] have not adopted the
method of difference of segments.

Again, when constructions are introduced through congruence procedures, extra
clauses are added to the data base and the explosive situation is aggravated. This is
particularly visible for problems 13 (PR13) and 14 (PR14) of our collection on
account of their large space of derivations. However, a combinatorial explosion
occurs for PR14, even when the difference of segments method is not considered. The
use of this congruence procedure is then compulsive and a depth-first exploration is
done for each possible construction.

4.2. THE UTILITIES

The utilities are special purpose and data management procedures. As examples we
mention:

(1) a counter of the number of points in the diagram;

(2) the procedure for trying congruences using bottom-up inference making on the
data base;

(3) procedures for finding points and directions using diagram knowledge;

(4) a clause to get three points for defining an angle given two directions;

(5) procedure to operate on lists;

(6) clauses to verify identities (points, angles);

(7) clauses to identify opposite, same and distinct directions;

* In parenthesis we give the name of the corresponding predicate.
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Fig. 4. Proof of two equal segments (UV = XY) by congruent triangles.

(8) procedures to verify point collinearity;
(9) clause for verifying a triangle equilateral;
(10) procedures to pick up a third side, a third equal side or a third equal angle, given
the other two;
(11) procedure for the management of unit clauses in the data base;
(12) procedures for generating permutations.

4.3. THE USES OF A GEOMETRIC DIAGRAM

Two uses of the geometric diagram as a model are made:

(1) the diagram as a filter (it acts as a counter-example);
(2) the diagram as a guide (it acts as an example suggesting eventual conclusions).

As a filter the diagram permits to test the nonprovability of a candidate subgoal, by
doing calculations with the coordinates given by the diagram. This way of rejecting
goals was proposed for the first time by Gelernter [10].

The use of the diagram as a guide for helping the search is briefly explained in the
following example (see Figure 4). We want to prove two equal segments UV = XY,
by congruent triangles. Suppose triangle XYZ exists, and our purpose is to find a
triangle UVW on UV to compare to triangle XYZ. We need to search for existing or
generated triangles on UV. The first thing is to find a convenient third point W, which
must be different from U and V. The possible coordinates of the sought point W are
computed from the coordinates of X, Y, Z, U and V, and a check is made in the
diagram to see if a point with such coordinates exists. The diagram is used in a positive
way for computing the possible coordinates for W.

5. Points of Friction

During the development of GEOM, several problematic points ocurred which
motivate the discussion about the arquitecture of the whole program. These
points were largely suggested by an analysis of the geometry problems collection. In
this section we state these points and we consider the methods used to solve
them.
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Fig. 5. Generation of congruent triangles for the proof of two equal segments (AB = EF) by congruent
triangles.

5.1. THE GENERATION OF TRIANGLES

The proof of two equal angles or two equal sides can be done by congruent triangles.
Before the use of the congruence procedures it is necessary to have (either by
generating them or by checking for their existance) triangles containing the angles or
the segments.

The equal angles and equal segments procedures of GEOM have two clauses, under
the heading ‘indirect strategies’, which make use of the congruence procedures. These
two clauses synthestize four search cases for pairs of triangles:

(1) existing-existing,

(2) existing-generated,

(3) generated-existing, and
(4) generated-generated.

The above order is motivated by the need to use first what is already known and stored
in the data base — what we call existing triangles. For example, if it is required to prove
AB = EF by congruent triangles, GEOM checks its data base for points C and D,
and directions C: A, C:B, D:E and D F. If these direction exist, we have triangles
CAB on AB and DEF on EF. If not, it is necessary to add such directions to the data
base as a means to construct segments A.C, B.C, E.D and F. D (see Figure 5).

Only the first case corresponds to the situation where the triangles already exist on
the given segment or contain the given angle. The other cases refer to the generation
of triangles and the possibility of making constructions as they are needed.

5.2. THE INTRODUCTION OF NEW POINTS

The introduction of new points can be envisaged as a means to make explicit more
information in the model (diagram), which is not contradictory with the hypotheses.
This introduction does not reduce the search space but for certain cases it may create
short cuts or new paths, which diminish the steps of a proof. The introduction of new
points was motivated by the analysis of problem 10 (see Figure 6).

F is the point to be introduced. As point F is the intersection of the diagonals of
a rectangle, its existance is known for any model. So, during the input of rectangle
ACDE, F is introduced and its consequences, new equal angles and sides (e.g.
diagonals equality), are asserted in the data base.
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Fig. 6. The diagram of problem 10.

The existance of point F allows the construction of segment BF, and thus the
congruence of triangles BAF and BCF to be proved. As a consequence, a new fact is
asserted, the equality of angles BAF and BCF, and another congruence of triangles,
between BCE and BAD, becomes possible.

This proof is general, as it utilizes a theorem (congruence of triangles) independent
of point B’s position. On the other hand, Goldstein’s proof [12], without the intro-
duction of F is too particular, because it depends on the position of B:

(1) for B out of the rectangle it uses sum of angles theorem;
(2) for B inside the rectangle it uses the difference of angles theorem.

Both theorems particularize the model, i.e. they are falsely used for some interpret-
ation. But in first order logic theorems must be valid for all interpretations. However,
a specific model can be considered as a general or categorical one, if what it particular-
izes is not used in the proof. Goldstein’s error consisted in using facts not in the
hypotheses (or not concluded), i.e. he used a specific diagram unwarrentedly as a general
positive example. However, the diagram’s role in this case is to act as a counter-example.

But a diagram for this problem is not unique (B can be anywhere on the perpen-
dicular bissector of AC). For GEOM, there is no difficulty at all if the new element
F is coincident with B, since the congruence of two degenerate triangles is still a
congruence. Thus, no use is made of what particularizes the diagram.

For this example, it is clear that simplification is obtained when a new point is
introduced. A combinatorial explosion would occur if F was not created, because a
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case analysis, involving a sum of angles clause would be required. On the other hand,
for problems with a large search space, the introduction of a new point would be
relatively catreastrophic: a combinatorial explosion would occur. For our problem
collection a heuristic was devised in order to balance the advantages and dis-
advantages of doing this construction: “‘only for diagrams with less than 8 points is
the introduction of a new point for quadrilaterals permitted”.

This facility, of introducing a new point, is available for quadrilaterials only. The
new point is the intersection of the two diagonals, and the midpoint of each one. The
coordinates of the midpoint are calculated using the diagram, and its name is chosen
from an alphabetical list, from which the characters of the existing points are taken
out. The generation of midpoints is preceeded by testing for then existence, and
followed by the assertion of equal segments, equal halves and directions for the new
constructed segments.

5.3. BREADTH-FIRST VERSUS DEPTH-FIRST SEARCH OF THE CONGRUENCE
PROCEDURE

The congruence procedure allows two kinds of search:

(1) a shallow breadth-first search in the data base;
(2) a general depth-first search.

The first kind is done beforehand for each of the five methods of triangle congruence
(Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Side-Angle-Angle, Rightangle-
Side), when looking for known facts.

The second kind is only attempted if the first fails to find a triangle congruence. This
was also done in Nevins’s program [13]: it tries to narrow down the selection of new
subgoals on the basis of information already present in the data base.

The motivation for this sequence of attempts was suggested by the analysis of
problem 1 (PR1) and by the behaviour of the PROLOG system. A quick look at PR1
revealed that the facts necessary for the proof were already available in the data base.
No depth-first search (imposed by PROLOG strategy) was required. However, if a
shallow breadth-first is not in force, there is a progressive search in depth, the
generation of more subgoals and a combinatorial chain reaction.

5.4. DOING, NOT DOING AND UNDOING CONSTRUCTIONS

When a human being does a proof he sometimes introduces new relations, by making
constructions which fill a gap in the chain of reasoning.

In automatic theorem-proving it is also advisable to explore this mechanism of
doing constructions. To discuss its implementation in GEOM, let us consider three
questions:

(1) what are the objectives of this mechanism? When should it be used?
(2) what are the required kinds of constructions?
(3) should constructions remain in the data base after they have been used?
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The motivation for discussing these questions was raised by problem § (PR8) where
two constructions, lines SU and TR, made the proof possible. Let us see the con-
struction process for this example. In order to prove the equality of angles STU and
RUT, by congruence, we need to construct the missing parts of triangles STU and
RUT: lines SU and TR. These lines are also necessary for proving the equality of sides
US and TR by congruence, which are in fact the missing parts of triangles SRU and
RST. This last equality is motivated by the first congruence. Another motivation came
from PR 13, where a construction, line NC, explores a new pathway to the goal, as it
is depicted in shown in Figures 19 and 20.

This kind of construction only requires additional line segments, constructed
between points already present in the diagram. Each segment is defined by a direction,
i.e. a unit clause. In the search tree, each construction is a new terminal node, and a
new link is made when a unit clause corresponding to a construction is used.

A further motivation was to implement a construction facility for missing segments
when proving that two segments are equal.

In particular, the third question concerns the data base management of the additional
clause, defining a construction. In fact two additional clauses are asserted, because the
opposite direction is also stored (similarly, the supplement angle is also stored with
cach angle).

Consider the example of part of the structured data base for a proof, as illustrated
in Figure 7.

For this example two subgoals were tried without success. These failures are stored
as nonprovable goals (NP).

After the failure of the two non-provable subgoals, a construction is made on
demand of a goal in the congruence clauses for equal sides. A flag and the new unit
clause are asserted in the data base. The flag hides the previous nonprovable goals,
which may become provable now that the construction was done. In the context of
this construction a third new provable goal fact is derived and asserted as a lemma.

+D(2)
+ NP (FLAG), ‘
+NP(3 ), |

—

4D (1) }lobeerase

] to be erase

+NP (FLAG),
in the context +NP( 2 ), |
of previous +NP( 1 ).

constructions .
.

Fig 7 Data base of non-provable goals in the context of constructions made
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No other lemmas are generated and still the goal which motivates the construction,
is not proved.

The undoing of a construction is motivated by the need of avoiding a combinatorial
explosion, more likely if the unit clause was kept forever in the data base. The
nonprovable subgoals and lemmas generated after a construction process, stay avail-
able a fortiori for the continuation of the proof, even after that construction is
undone. If and when a construction is undone, the flag, the direction unit clauses, but
not the nonprovable subgoals are eliminated.

5.5. THE NEED FOR THE USE OF CONTEXT

Paths enabled by constructions may not enable the proof of the goal clause. In spite
of this failure, some facts may be proved and asserted in the data base. However, no
context distinction is done between these facts and the facts proved during a successful
path. For example, to prove equal sides by congruence, additional line segments are
required for building triangles. During the exploration of each construction some
proved lemmas are asserted and may be used later on, as it is shown for BA = NC
along the proof of Figure 19.

One use of context was implemented in GEOM, concerning the recording of failure
goals (nonprovable goals). Consider Figure 7 where a construction occurs after two
nonprovable goals. A flag makes invisible these nonprovable goals to the exploration
subsequent to that construction. Thus, these nonprovable goals remain only in the
context of previous constructions.

The objective of using context information is the recognition of a goal which failed
before, but only if no new construction has been made since. The mechanism to
implement this objective is composed of two clauses, the non provabile filter and the
record failure ones, respectively at the top and at the bottom of the equal angles and
equal sides procedures. The first clause recognizes failed goals in the context of
constructions made and the second one stores them. A further discussion of this point
is done in Section 6.3.

5.6. TWO TYPES OF CALL OF A CLAUSE

PROLOG has only one kind of variable — the logical variable ~ which may be
either an input or output variable. This distinction depends on the mode of use of
the clause containing the variable. We distinguish two modes or types of call of a
clause:

(1) all variables are instantiated — to verify;
(2) at least one variable is not instantiated — to find.

The first type, to verify, is used for example for verifying the existance in the data base
of a certain fact. It corresponds to checking, the first of four tasks in automatic
theorem-proving discussed in van Emden [6].
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Consider a theorem to be proved of the following form: R(A, B). This form
determines the task of checking, with two possible answers: yes or no. An example
from geometry illustrates this task:

Question: is segment AB equal to segment CD?

The translation of this question into PROLOG is the single argument procedure call:
—ESI(A.B=C.D!*X1!+X2)

which activates the equal segment procedure of GEOM:
+ ESI(S1. x82=%S3 . xS4/WHY!DBAS)

where xS1, #S2, *S3 and *S54 act as input variables. The atoms WHY and DBAS that
are used to denote look up the reason for the truth of the goal.

The second type, to find, is adopted to search for a desired fact in the data base. It
corresponds to simulation, another task of automatic theorem-proving.

Consider a theorem to be proved of the form: 3X R(A, xX). This form determines
the task of simulation, with two possible answers: yes *X =B, or no. An other example
from geometry illustrates this task:

Question: is there any segment with extremity A
equal to any segment with extremity C?

The translation of this question into PROLOG is the procedure call:
— ESI(A . «X =C . xY!*X11¥X2)

which activates the equal segments procedure (ESI) of GEOM. «S3 and %S4 act as
output variables. The result is: *X =B and *Y=D

The first type of call of a clause, to verify, is the most common in GEOM. The second
type, to find, is used for instance when the bottom-up procedures are activated.

57. THE DATA BASE AND ITS ACCESS

The ultimate objective of a data base is updating and retrieving facts. The addition
of new facts and its retrieval depend on the structuring and the searching of the data
base. Two concepts, equivalence classes and canonical naming, help to structure and
access the data. The equivalence class concept is particularly important in geometry
since we are dealing with equivalence (or rather congruence) relations, such as side
and angle equality or parallelism.

The data base we have used stores each relation between two elements in the
equivalence class of all other elements known to be in the same class. Each
equivalence class is represented by an oriented tree in which the arcs stand for
individual relations between elements (the nodes) and in which the root is taken as the
representative element (or witness) of the class. With this representation transitivity
is obtained for free since any two elements with the same witness are implicitly in
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Fig. 8a. The growing of an equivalence classe tree.
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Fig. 8b  The growing of an equivalence classe tree.
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Fig. 8c. The growing of an equivalence class tree.

relation (although no explicit arc may exist between them). These trees grow by
merging as explained in the example illustrated in Figures 8a, b, and c.

Five facts (A, B, C, D and E) and three (equivalence) relations (R(A, B), R(B, C)
and R(D, E)) are given. When these relations are stored, the resulting trees are
sketched as follows in Figure 8b.

The trees pictured above are composed of two disjoint equivalent classes. Elements
B and E are chosen arbitrarily to be the witness in each class. The arrows on the arcs
show the direction of growth of thre tree. In the data base three relation elements are
stored: R(A, B), R(C, B) and R(D, E). One relation element, R(C, D), is added. Both
classes are merged and one of the witness, E, is chosen to be the witness of the enlarged
class. The tree at this stage is illustrated in Figure 8c. This kind of organization was
firstly suggested and implemented for all three sets of assertions (equal angles, equal
sides and same direction). An example of a tree of parallel directions is presented in
Figure 9.

C:D
AB s parallz! to CD
and

EF is paralici to CD
A E E:F

Fig. 9. A tree of parallel directions
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Fig 11 The construction of congruent triangles on equal sides.

The direction of CD (C:D) is the witness of these three directions. This tree
represents an equivalence class, and it is easy to conclude that AB is parallel to EF,
i.e. we get transitivity for free. We say (C: D) is the witness of (A : B) if there is another
direction (E : F) related to (A : B), i.e. with the same direction. Another example, for
equal sides, is depicted in Figure 10.

This characteristic of the data, the existence of relations with the three properties
symmetry, reflexivity and transitivity, suggests an appropriate data structure, the tree,
for the equivalence classes, which aids in deductions based on the set of properties.
Transitivity implications from sets of facts are automatically available in the
structure, with no additional memory, and with an appropriate access scheme.
Symmetry is dealt with by canonical naming.

This data structure, the tree, copes well with one sort of query. The following
question is an example: “is AB parallel to CD?" However, when a bottom-up
procedure was introduced, to generate more facts from the existing and given facts,
some difficulties occurred, on account of the type of questions stated. The following
question is an example: ““is there any segment with extremity A equal to any segment
with extremity C, AX=CY, where the variables X and Y are not instantiated?”

Let us see, by means of an example, the kind of difficulties that occur if we use the
tree structure.

The bottom-up procedure consists in trying to find and to prove two congruent
triangles, given the facts in the data base. The new facts infered and asserted may be
useful in the top-down search. In order to find two congruent triangles, two equal
segments are picked up from one tree, starting at the top witness. For each segment,
one point is picked up, Y and W, such that XY=UW and YZ=WV.

To retrieve such pairs of equal sides, from each tree, takes too much time, on
account of the necessity of scanning the whole tree, although it is fast to find a witness.
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Fig. 12. List structures representing equivalence classes.
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Fig. 13. The construction of a list structure.

Instead, if a list structure is chosen, picking up a pair is easier and faster, as we shall show
next. An advantage is that one needs only one access clause for both types of access.

The list structure is obtained by a different way of linking the equivalence class
witnesses: the witness of an equivalence class points to the tail of the related
equivalence class. Consider the previous example, employed to explain the growing
tree structure. For the list structure, Figure 12 below sketches the stage of adding three
new relations to five old facts.

The lists represent two disjoint equivalent classes. Elements A and E, respectively,
are chosen to be the witness of each class. The arrows on the arcs show the building
direction of the lists and point towards the head or witness of the lists. If a new
relation, R(C, D), is added, both lists are linked as shown in Figure 13.

The witness or hear of one equivalence class is connected to the tail of the other
related class. If a question occurs about the equality of AB and GH, the answer is
quickly retrieved. A practical example for equal angles is depicted in Figure 14.

The final adopted solution contains both data structures discussed, in order to balance
the requirements imposed by the two sorts of questions. Both data base structures are
devoted to relate the elements of each one of the sets of relations of assertions:

(1) a tree for directions, and
(2) lists for equal segments and equal angles.

There are two data base axioms, one for equal segments and another for equal angles.
These axioms allow two sorts of retrieving, which correspond to the two questions
pointed above: to verify or to find a relation in the data base. The axioms are founded
on the concepts of witness and equivalence class, and use canonical naming.

C!R.NQ N!B.S:R
N:B.)B:S CiR.Q:N
B!N.N!Q B:S'AC"R
B:S.R:C BIN.Q'N

Fig 14 The hist orgamzation for equal angles.
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Let us for the first type — to verify — present an example:

to prove BA is equal to CD
try first to verify if the face ‘BA = CD’ is in the data base.

As this pair of sides is not an identity, each element is put in the canonical format (AB
and CD); and if both sides have the same witness, they are found to be equal.

In the second type, so find, the access axioms are able to discover if the relation
required is in the data base. Consider the following example to explain how this
discovery is carried out:

to generate more facts based on the given fact AB = CD, try to prove triangle
ABX congruent to triangle CDY; to achieve this goal; find AX is equal to CY
(X and Y are variables).

The objective is to find in the data base a pair of equal sides with only two known
points A and C. The equal segment procedure is activated by a procedure call with
two variables not instantiated and acting as output variables. The data base access
axioms are also activated with the two variables not instantiated. For this case, the
identity and canonical naming clauses stay inactive and it is only found whether there
is any pair of equal sides on A and on C.

5.8. TOP-DOWN VERSUS BOTTOM-UP SEARCHES

The controversy between the adoption of top-down or bottom-up directions of
execution is also present in making a geometry theorem-prover. While Gelernter [10]
and Goldstein [12] defended the first approach, Nevins [13] argued in favour of the
second. However, it is quite clear that the set of problems chosen by each researcher
was primarily linked to their point of view, and each problem was selected to adjust
to it: Gelernter’s and Goldstein’s problems were suitable for top-down analysis, and
Nevin's problems for bottom-up analysis. Indeed, the efficiency of each geometry
prover was doped by the direction of analysis of the problem sample, and no one
clarifies this. A general prover should be able to mix both directions of execution.

This controversy would be more relevant if we had a precise answer to the
questions: ‘‘how do we define a typical bottom-up or top-down problem in
geometry?”. We propose the following definitions.
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Typical top-down problems are those for which there is only very few consequences
when the congruence relation is applied on the given facts.

Typical bottom-up problems are those for which there is a lot of consequences
when the congruence relation is applied on the given facts

Nevin’s problems, typically bottom-up, are in a way very connected because they
hide given facts behind congruence relations. Welham [18, 19] showed that when the
problem is adequate for a bottom-up analysis a typical top-down prover does a lot
of search to find the halt clause. Similarly all of Nevins's examples, which do very well
with this bottom-up methods, are difficult for our top-down prover. Analysing the
proof tree for one of these problems (PR13), we may observed the following:

(1) the clauses’ ordering for a predicate defines the search sequence. An ordering
adequate for bottom-up problems is not suitable for top-down problems. The
position of the transitivity clause is especially critical. In our program, during
top-down, transitivity transforms one given problem into two similar problems.
However, used bottom-up, it transforms two known facts into three known facts.
That is why we structured out data base to get the third fact for free, by using the
equivalence class plus witness structure. We are in fact doing an implicit (shallow)
bottom-up when we assert facts into the data base.

(2) generally, in bottom-up problems we find a gap when we go top-down. This gap
may be easier to fill if we generate some more facts at the bottom.

The bottom-up direction of execution is independent of the goal clause. Top down
direction of execution is independent of the hypotheses. A mixture of both is desirable
to control ‘dispersion’, but the two “‘cones’” may miss each other completely.

Deciding upon one, it is advisable to compensate by doing a bit of the other. We
note in passing that Nevins also does top-down search, when proving equal angles or
equal segments by triangle congruence. With this view in mind, and for bottom-up
problems (e.g. PR13), we introduced a shallow bottom up search right at the start.
The bottom procedure generates more facts upon the given hypotheses, trying to find
implicit triangle congruences in the problem data. For each pair of equal sides it looks
for existing triangles, with at least three already known facts, and asserts its
deductions in the data base.

5.9. THE HEURISTIC USE OF TRANSITIVITY

Transitivity relations may play an important role in proofs, because they guide the
search for the proof, improving the efficiency of GEOM. This role is particularly
relevant for typical bottom-up problems, on account of the top-down character of
GEOM. For this kind of problems we usually find a gap, when we do top-down. One
way to fill this gap is the generation of more facts at the bottom, through the bottom
procedure discussed in the previous section. An alternative way is the use of
transitivity at the top, to reduce one given problem to two dependent sub-problems.

As an example consider problem 14, sketched briefly in Figure 16 (see its proof in
Figure 22).
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C

Fig 16. A part of the diagram of problem 4.

The goal is to prove two equal angles EAD and CAD. A simple use of transitivity
consists in replacing the goal by two sub-goals, through the introduction of a third
element. One way to find this element is to recognize a third equal angle by parallel
sides. Thus, the first sub-goal shown below is proved, and a proof is tried for the
second sub-goal.

GOAL: <EAD=<CAD third equal angle: < NDA

Ist. SUB-GOAL: < CAD= < NDA by paralell or antiparallel sides
2st. SUB-GOAL.: to prove the equality of EAD and NDA.

The motivation for the use of transitivity was spurred by the analysis of PR13 and
PR14. In both cases there was an immediate need for the use of transitivity to link
proof steps. This need was uncovered by the top-down character of GEOM. In
Nevins’s work this need was taken care of by the use of bottom-up search.

A pertinent question is the selection of the best place in the program for the
transitivity clauses for equal angles, equal segments and parallel lines procedures. In
GEOM the transitivity clauses were inserted at the bottom of each group of clauses,
as the last thing to try. However, would this property be explored at its maximum,
if it was embedded in each clause?

6. Computational Control

Efforts were made to sepaerate logic from control and to make explicit pieces of
control, because it becomes easier to understand and modify a program, and it makes
possible the use of the same logical clauses with different controls. In fact, we
experimented and concluded that we could separate them in GEOM.

6.1. THE SEPARATION BETWEEN LOGIC AND CONTROL

A separation between logic and control is possible and desirable in PROLOG
programs, as GEOM. The distinction between the two components of the specification
of an algorithm A:

A =L+C
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the ‘logic’ component L, which expresses what is to be done, and the ‘control’
component C, which expresses how it is to be done, makes it easier to write and to
understand a program (see van Emden [6]).

Prolog, a programming language based on predicate calculus, is not a purely
descriptive language as predicate logic. It requires one to express additional infor-
mation on how to do it. This separation was implemented in three procedures: equal
angles, equal sides and congruence routines. It was motivated by the need for more
control because of the use of a bottom up procedure concurrently with the top-down
ones. This implies two types of call of a clause and data base handling operations with
variables not instantiated, already discussed. Moreover, the use of a shallow bottom-
up requires a discussion on the modification of the congruence routines.

6.1.1. In Equal Segments and in Equal Angles

The first point, similar in both the equal segments and equal angles procedures, is
related to the two types of call of the clause giving access to the data base, clause
DBAS.

For the first type, to verify, all variables are instantiated (or ground) and the clause
is required to be used only once. For the second type, to find, at least one variable is
not ground and it is necessary to access the data base several times, in order to retrieve
all possible instantiations, and get a fully exploration by the congruence procedure.
This control is accomplished by the clause CHECKS (and by CHECK A for the equal
angles procedure).

Let us see an example concerning the use of a congruence clause, CON3 (a con-
gruence theorem), when it is called by BOTTOM, with two variables not instantiated.

This is the case which arises in the derivation of the possible consequences from the
following fact: AB=CD. The objective is the exploration of all existing triangles on
AB and on CD. This exploration is done by the procedure CON3. For the first clause,
the congruence theorem regarding equality of sides (S-S-S), is required to find one or
more pairs of sides, on points B and D. This is done by the first call

—ESI(8.+Z=D .+*W!*WI!'DBAS)
of the clause with head

+CON3(A.B.+Z=C.D.+W,DBAS.DBAS, GIVEN).

E.G FH

A B c o

Fig. 17. The search for a congruence relation.
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The variable *W1 acts as a slot for explanation information. The atom DBAS is used
to force data base look up first.

A pair is picked up, for instance BE = DF, and it is checked if AE = CF (see
Figure 17).

As this fact is not true, another pair is picked up, for instance BG = DH, and it
is checked if AG = CH. The search goes on, controlled by claus CS till all possible
pairs are searched for.

The second point, for equal angles, is related to the use of canonical naming
routines, when at least one variable is not ground. This point is not yet solved, and
a by-pass solution was adopted: the angles are generated and filtered by the diagram
(EAFILTER); afterwards, they are checked either as immediate equalities or as
existing already in the data base. The second point, similar to the one for equal
segments, is easily solved and direct retrieval is possible either with all variables
instantiated or not.

6.1.2. In the Congruence Procedure

The introduction of a shallow bottom-up search leads to two types of call of a clause,
and to a slight modification of the control for the congruence routines.

A separation between the logic and the control was done by eliminating extra
control evaluable predicates in the clauses of the congruence procedure, and con-
structing clauses to describe the behaviour of the inference process (how to do it).

Let us remark in passing that in general, and so for the whole of GEOM program,
one can isolate the control in control clauses which access the appropriate logic
clauses as long as they are identified by an extra argument giving them a name.

One of the calls of each congruence clauses (CON3) is a filter (CONFILTER) able
to control the search. It is only activated for the bottom-up search, simultaneously
with the clause EAFILTER, responsible for the generation of angles.

During bottom-up search, each congruence clause (congruence method) is used at
least once, to retrieve all possible sides from the data base which are necessary for
constructing triangles on the pair of sides chosen by the bottom procedure.

The CONFILTER, composed by a diagram filter and a switch, is able to reject pairs
of triangles for the following cases: collinear points, same triangle and already proved
congruent triangles. The re-use of each congruence clause for finding another pair of
congruent triangles is effected by a simple switch clause.

6.2. MAIN CONTROL DEVICES

Control devices are special clauses able to guide the search and avoid unproductive
search (e.g. impossible goals, loops). In GEOM, there are two types of control devices:

(1) model as a filter, and
(2) filters.
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In the first type, a model (i.e. a particular interpretation of a general logical statement)
is used as a filter. It prevents irrelevant goals from being pursued. As an example, we
have the geometric diagram filter, discussed in Section 4.4 and proposed by Gelernter
{10]. It uses analytical geometry to reject false goals through simple numerical
computations.

In the second type the filter is not a model. As examples we have the uniqueness
filter, the nonprovabile filter and the DC filter.

The uniqueness filter prevents looping by allowing each subgoal to be attempted
only once in a branch. It is inserted in the following procedures: equal angles, equal
segments, parallel lines and congruence routines, and only in these since all other
procedures necessarily use them.

The nonprovable filter, discussed in Section 5.4, recognizes nonprovable goals,
previously stored by clauses which record failures. It is inserted in the equal angles and
equal segments procedures.

The DC (direct congruence) filter rejects undesirable pairs of congruent triangles,
not caught by the diagram filter: isoscelles triangles, already proved congruent triangles,
and identities. It is therefore inserted in the direct congruence routines after the
diagram filter. The DC filter is a part of a more sophisticated one, the CONFILTER,
used when the bottom procedure is activated. The CONFILTER is also able to avoid
the generation of collinear points for a triangle.

6.3. SUBGOAL CONTROL
GEOM has two facilities for subgoal control, which are summarized by two situations:

(1) remembering proved subgoals, and
(2) remembering subgoals which failed.

An example illustrates these facilities and its deficiencies, and the need for a better
interpreter [14]. In this example, the subgoal is to establish two congruent triangles,
and three methods are available (Side-Side-Side, Side-Angle-Side, Side-Angle-Angle)
(see Figure 18).

The first situation arises when goal S1 = S’l is finally proved, in the context of the
SSS strategy. One would like the established fact S1 = S’I to be stored so that it may
be used in the context of the two other strategies (SAS and SAA) for proving triangle
congruence. Briefly, we would like information to be passed from one branch of the
search tree to another. The mechanism for doing this has to be made explicit by the
user in his program, as it is done in GEOM.

The second situation arises when the attempt to prove a subgoal fails, as with the
subgoal S3 = S’3. One would like to have this information available in the other two
branches (SAS and SAA) of the search tree, so that no further attempt to prove it need
be made. It is up to the Prolog user, however, to provide the mechanism for storing
and retrieving such information. This mechanism is implemented by two devices: the
nonprovable filter and the record failure clauses, placed at the top and at the bottom
of equal angles and equal segments procedure, respectively.
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Fig. 18 Cases of sub-goal control.

64. GOAL CONTROL

Each time a lemma is asserted in the data base, the program may ask whether it is
identical to the goal it is trying to prove. If the answer is yes, the program stops with
a successful proof. This goal may be the top goal or any other subgoal, and it may
be possible to infer it by transitivity performed on the data base.

Two situations, though not considered in GEOM, regarding the control of goal
statement generation are discussed:

(1) the goal statement is generated by an procedure; and,
(2) the goal can be infered by transitivity from the data base.

The discussion is motivated by two deficiencies of GEOM.

The first situation concerns the possibility of a program recognizing that a
derivation has proved its goal statement and stoping execution. Each time a new fact
is proved, by say the congruence procedure, it would only be asserted and added to
the data base if it is not the goal statement (Nevins [13]; Welham [18, 19]).
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The second situation concerns data base management and relational inference.
Consider the example:

GIVEN FACT: AB=CD
GOAL: CD=EF

When the fact AB=EF is proved and asserted in the data base, the structure of related
equal segments (RESO) contains the information that the goal statement is proved by
transitivity:

AB = CD = EF

and no further search is necessary. However, the GEOM data base has no capability
to relate the fact CD = EF, to the goal CD = EF, and the search goes on.

7. Suggested Clues for Further Work

Some aspects are discussed, suggesting further research directions for the develop-
ment of a geometry theorem prover. The main aspect is the improvement of Prolog
system itself. Other aspects focussed are alternative proofs of a theorem, storing and
using proved theorems, the uses of symmetry and the automatic generation of
diagrams. These accessory aims are intended as a sophistication of the program for
geometry theorem-proving, and not as an enlargement of its geometry domain.
Enlargement of this domain would be done for instance by the addition of knowledge
about proportions.

7.1. ALTERNATIVE PROOFS OF A THEOREM
Two points arise when discussing the generation of alternative proofs of a theorem:

(1) the organization of geometric knowledge, and
(2) the difficulty in using diverse overall strategies.

The first point is concerned with the organization of the geometric knowledge (axioms
and theorems) in the program: the ordering of the clauses for each procedure. The
ordering for equal segments is particularly critical and determines not only different
searches but combinatorial explosions, mainly because GEOM has a construction
facility. Figures 19, 20, 22, and 23 picture the close dependence between the proofs
of PR13 and PR14 and GEOM organization (GEOMI1 is a version of GEOM with
no difference of segments clause in the equal segment procedure). Figure 21 shows
another proof for PR13 done by program G [18, 19].

For PR13 we only need three clauses for equal segments procedure (S4, S8, S10),
but GEOM has no possibility to detect it. Instead, it uses every clause in a depth-first
way. Figures 19 and 20 illustrate one disadvantage of the depth-first search, as the
methodic pleasure of a burocrat proving a unnecessary fact: AP = CP.
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The second point is concerned with the lack of different overall strategies, either in
GEOM or in Prolog, inbuilt but selectable. This point may be solved by two
approaches:

(1) the addition of more theorems to GEOM; and
(2) the implementation of a new inference system, Earley deduction, in order to
explore differently the body of geometric knowledge of GEOM.

For the first approach it would be more interesting to have specific knowledge on how
to use the existing theorems than to add new geometry theorems, i.e. more control
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clauses. One approach is the identification of patterns which call for special

constructions.

Constructions have been discussed as a facility for proving equal segments or equal
angles by congruent triangles (see Section 5.4.). Those constructions, line segments,
where done for achieving a certain subgoal, and erased afterwards.
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Fig. 24. A construction pattern, the parallelogram.

Let us consider an example to illustrate what we mean by a construction pattern.

GIVEN: triangles ACB and ADB are equal and on opposite sides of AB;
TO PROVE: M is the midpoint of CD.
CONSTRUCTIONS: draw AE parallel to BD;
BE parallel to AD;
join EC, ED, CD.
PATTERN: parallelogram AEBD

For this example, the pattern is a parallelogram, created in the diagram by means of
constructions. The new elements make explicit more information (relations in the
diagram (model), which are not contradictory with the hypotheses. The new relations
induced short cuts in the search space of the problem and in some cases help to fill
in gaps in the proof. The pattern may be viewed as a tactic to help a strategy.

The second approach, the implementation of a new inference system from scratch
proposed by Warren (Pereira and Meltzer [14]) is discussed in Section 7.5, concerning
the overall improvement of Prolog.

7.2. STORING AND USING PROVED THEOREMS

Storing and using proved theorems is a matter of interest for further developments of
a geometry theorem-prover. This interest suggests one of the reasons for having a
more complete separation between logic and control, because we would like to add
the new theorem without having to specify within it any control.

We may consider this problem as more complex than the mechanism for remember-
ing proved subgoals (lemmas), already implemented in GEOM, and discussed in
Section 6.3. Now, we are interested in storing clauses instead of unit clauses. The
complexity arises when clauses describing theorems contain the information on how
to use them, i.e. logic and control are mixed. On the contrary, the problem becomes
simpler when a complete separation is made. Thus, the logic of the theorem may be
the only component to be stored. New theorems would be used by the already existing
control. In Section 6.1 the separation between logic and control was discussed, and
examples were given on how this problem was tackled in GEOM.
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7.3 THE USES OF SYMMETRY

The uses of symmetry in geometry theorem-proving are based upon two fundamental
types of symmetry:

(1) syntactic, and
(2) geometrical.

Syntactic symmetry is general and it may be applied to any formal system. Consider
the formal system of plane geometry and the set of hypothese of problem 6:

ES(AB=AD)
ES(BC=DC)

If we exchange B with D in each unit clause, we get the same set of clauses:
ES(AD=AB) ES(DC=BC)

and we may say that problem 6 has a syntactic symmetry, which makes the set of
hypothese invariant under the syntactic transformation: B{->D.

The predicates of geometry exhibit a high degree of symmetry and by discovering
syntactic transformations one can manage to reduce the computing effort of a
geometry theorem-prover. Gelernter [8, 9] was the first researcher to recognize the
power of syntactic symmetry and he proposes two uses:

(1) a negative one — for pruning subgoals which are syntactic variants of subgoals
already tried without success; and

(2) a positive one — by establishing subgoals which are syntactic variants of other
already proved subgoals, since their proof would simply be a syntactic variant of
an already existing proof (mathematician’s do it by saying ‘similarly’).

Gelernter’s symmetry is not calculated by his program. On the contrary, it is declared
by the user by observing the geometric diagram. A combinatoral problem was thus
avoided for geometric problems with a large number of points (e.g. 10). A fortiori, a
dynamic use of this symmetry is not explored in his program. In GEOM a single use
of syntactic symmetry is implemented, through canonical naming. It handles the
permutation on the names of the syntactic variables in unit clauses, as discussed in
Section 3.5.

Geometrical symmetry is the arrangement of the points of a figure into pairs of
points (where a point may pair with itself). It is also a syntactic symmetry.

A study of this symmetry was developed by L. M. Pereira, on making a Prolog
program, called SYMM.,* which is capable of finding partial and complete line
symmetries of a geometry problem.

SYMM may calculate this symmetry for problems defined either with a diagram
or without it. SYMM may be inserted in GEOM and be a good guider of the
search.

* A listing of program SYMM will be sent upon request.
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Xt Y1

P
[ S—
>3

X
Fig. 25. Symmetry rule IT.

SYMM has 8 rules of line symmetry, implemented in procedure LSYMM. We only
consider the following ones, as examples:

RULE IT:

point U is symmetric relatively to pair XY (X different from Y) if

there is some known a pair X1Y1 symmetric relative to pair XY, and point X1 is
different relative from point Y1, pair UX! equals pair UY1 (see Figure 25).

RULE 8T:

point U is symmetric to pair XY if

there is a pair X1Y1 symmetric to pair XY, there is a point Z symmetric to XY, point
Z is different from point X1 or Y1, and angles < UZY1 and <UZY1 are equal.

RULE 3T:

pair UV is symmetric to pair XY if

point U is different from point V, there is a pair X1Y1 symmetric to XY, point X1
is different from point Y1, direction from X1 to Y1 is different from directions U to
Vand Vto U, angles < UX1Y1 and <UY1XI are equal, and direction X1 to Y1 is
parallel to direction U to V (see figure 26).

RULE 4TC:
pair UV is symmetric to pair XY if
point U is different from point V, there are two pairs ZW and X1Y | symmetric to pair
XY, point X1 is different from point Z, directions X1 to W and W to V are the same,
X Y
? *
o BE )

U -
GA AL

Fig. 26. Symmetry rule 3T.
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Fig 27. Symmetry rule 4TC

directions Y1 to Z and Z to U are the same, and pair UZ equals pair VW or pair UY1
equals pair VX1 (see figure 27).

Now let us reconsider problem 6 to show how SYMM works. SYMM gives a
partial symmetry through the application of rule 1T, to points A and C:

AC 1s a line of symmetry
D is symmetric to B

Further on, it finds a complete symmetry through the application of rule 8T to point
E:

ACE is a line of symmetry

This symmetry could only have been proven after the previous one. Similarly, any
symmetry proof depends on the availability of needed facts. Thus, a certain symmetry
may not be possible to prove at a given stage but may be possible to prove later on.
This points to a dynamic use of symmetry.

Following the proof of problem 6, we envisage the use of geometrical symmetry for
guiding the search by providing the appropriate congruent triangles even when there
is no diagram for helping with the coordinates.

When we look at a diagram, the recognition of geometrical symmetries helps us to
sketch a plan and to direct our proof of a theorem: to structure the proof and to
re-arrange its pieces of reasoning. In a way, geometrical symmetry is viewed as a
higher level concept giving global information, which allows the increase of
directionality and the decrease of search.

But how can this be used in GEOM? For PR6 the existance of line symmetries gives
us a straightforward way for concluding more facts about the equality of angles and
sides: the goal ES(BE = DE) may be immediately asserted by symmetry. However,
this is a unfair proof!

Of course, one could use SYMM as a device for pruning, but we would like to use
it in a more positive way. We envisage SYMM as a hunch given and not as the basis
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for a proof. Thus, what is desired is to find its function as a control device, a kind of
‘strategist’.

7.4. THE GENERATION OF A DIAGRAM

With the given hypotheses how is it possible to generate a diagram?

A diagram (model) is one particular interpretation of the given hypotheses (the
hypotheses define a family of diagrams), which can be used as a counter-example
during the proof.

One may consider the automatization of the task of generating a diagram, instead
of having to give a set of points and its coordinates. This generation may be viewed
either as static, done before the proof, or as dynamic, done during the proof as
needed.

Let us consider only the static generation of a diagram, analysing, as an example,
the protocol of a subject for problem 6:

(1) pick up the first element of LINES, BE;
(2) check if BE (or EB) is present in any given relation;
(3) generate a value for B;
(4) generate a value for E;
(5) pick up a second element of LINES, DE;
(6) check if DE (or ED) is present in any given relation;
(7) generate a value for D,
(8) do not generate a value for E, because it exists already;
(9) pick up the third element of LINES, ACE;
(10) check if AC (or CA) is present in any given relation;
(11) check if CE (or EC) . . . ;
(12) check if EA (or AE) . . .;
(13) generate a value for A . . . ;
(14) generate a value for C, noting that A, C and E must be on the same straight line;
(15) pick up the fourth element of LINES, AB;
(16) check if AB (or BA) .. . ;
(17) as AB = AD, A must be located on a straight line crossing the midpoint of
BD;
(18) re-check the values generated for A, B and D in order to be adjusted to 17);
(19) generate a new value for A;
(20) generate a new value for C, noting 14);
(21) pick up the fifth element of LINES, AD;
(22) check if AD (or DA) is present in any given relation, and if AD (or DA) was
already used jump to the following pick up;
(23) pick up the sixth element of LINES, CB;
(24) check if CB (or BC) . . . ;
(25) as BC = DC, C must be located on a straight line crossing the midpoint of BD;
(26) re-check the values generated for B, C and D in order to adjust to 25);
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(27) pick up the seventh element of LINES, CD,;

(28) check if CD (or DC) . . . and if CD (or DC) was already used jump to the
following pick up, if it exists;

(29) no more elements in LINES: STOP.

With this sequence of tasks one may derive an experimental algorithm, and refine it
with more protocols. For the programming of this we may consider two points: the
construction of lists of points (during the process abstract values are generated for the
coordinates) and the use of symmetry to guide the generation of the diagram.

7.5. THE IMPROVEMENT OF PROLOG

Our experience with problematic situations, detailed in Sections 6.2 and 6.3, motiv-
ated the need for a more sophisticated predicate logic interpreter. This sophistication
will be achieved mainly through the improvement of Prolog’s operational semantics
(proof procedure), which will provide more powerful facilities. These facilities will
free Prolog users from having to provide special ‘mechanisms’. Better and clearer
programs will be written.

A proposal for a new inference system was done by Warren (Pereira and Meltza
[14]), on the implementation of an efficient predicate logic interpreter based on Earley
deduction (ED). The ED is a top-down proof procedure, analogous to Earley’s
algorithm for parsing context-free languages, and it uses simple instantiation as a rule
of inference in addition to resolution. This improvement will provide complete
satisfaction for the three problematic situations already discussed: automatically
avoiding loops, storing proved facts, and remembering goals which failed.

Let us examine how ED deals with the three problems, discussed in sections 6.2 and
6.3. The example shown in Figure 18 is now revisited with the help of Figure 28.

In Figure 28, we have the same top goal as before (to prove T1 and T2 congruent).
However, when the SSS method is tried out, subgoal T1 = T2 is rejected since it is
subsumed by the top goal, subgoal S2 = S'2 is stored as a lemma after being proved,
and subgoal S3 = S’3 (which could not be proved) becomes an already activated
subgoal. Thus, when trying the other two methods (SAS and SAA), enough
information is available for rejecting S3 = S'3 as a subgoal to be pursued, and for
solving 82 = §’2 straightaway since it has been previously stored as a lemma.

Other improvements over Prolog system are envisaged, such as associative memory,
space saving and compilation instead of interpretation. Earley deduction will require
large data bases and further studies on their management will be carried out. This line
of research will no doubt enlarge the increasing number of Prolog applications.

8. Conclusions
In this section we shall briefly review some of the issues that have been explored:
(1) The representation of geometric primitives.

Flexibility and generality are achieved by the concepts of equivalence class and
canonical naming. Representation of angles by directions is prefered.
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Fig. 28. The sub-goal control example revisited.

(2) The uses of a geometric diagram as a model.

Two uses of a diagram are made: as a filter (it acts as a counterexample); as a

guide (it acts as an example).
(3) The introduction of new points.

The introduction of new points to make explicit more information in the
diagram and to create, for certain cases, shortcuts or new paths, which diminish
the steps of a proof.

(4) Shallow top-down breadth search versus depth-first search for the congruence
procedures.

To suspend the selection of new subgoals until more information, perhaps
already present in the data base, is searched for, by means of a shallow breadth
search for each of the congruence procedures.

(5) The introduction of constructions.

A construction facility (doing, not doing and undoing) for missing segments,
when proving that two segments are equal, as corresponding parts of congruent
triangles.

(6) The data base and its access.

Structuring and accessing the data is achieved through two concepts: the

equivalence class and canonical naming.
(7) Top-down versus bottom-up.

The mixture of top-down with a shallow bottom-up which only explores

consequences of the given data, in what concerns the triangle congruence relation.
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(8) The uses of transitivity.

Two uses of transitivity are implemented: the implicit one — where transitivity
is obtained for free, on account of the use made of equivalence classes — and the
usual explicit one.

(9) The separation between logic and control.

Separation between logic and control is possible and desirable in Prolog
programs, as in GEOM. Two immediate advantages: 1) the storing of proved
theorems independently of how they will be used; 2) the use of logic clauses in
different ways, according to the control clause.

(10) The use of geometrical symmetry.

Geometrical symmetry can give global information about the problem or its
symmetric parts. It can be used for pruning and directing the search, especially
if no diagram is provided. Other uses of symmetry have yet to be explored.

(11) The need for a more sophisticated predicate logic interpreter.

The work on geometry theorem-proving points to an improvement of the used
language, Prolog. The main improvement would be the implementation of an
efficient predicate logic interpreter, based on Earley deduction. This improve-
ment would provide complete satisfaction for three general problematic situations:
avoiding loops, storing proved facts, and remembering goals which failed.

(12) The widening of Prolog applications.

Earley deduction and other improvements on Prolog, such as data base
management, will help the use of a language based on FOL in a large and
complex domain.
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Appendix 1. A Sample of the Problem Collection

~SORCHA ("FROBLEM S GELERNTER,S").
+DIAGRAN.

-A(0+0) .
-B(12y0).
-Cl4+2).
—0(2,2).
~E(2:1).
-F(7:1).
-K(10,0).
-H{l 1),

+FIN.

+L. INES (AKE. BC.CDN. IMA . AEC. DFB. MEF .CFK) .

+FR(AB.DC) .
+MIDFOINT (EvAC) .
+MIDFOINT (FoBIND .

+G0AL .
~MIDFOINT (MrAD).

o
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-SORCHA (" FROLLEN 6 GOLDSTEIMs17) .
+DTAGRAN.

-A(0s4).
-n(3+8).
-C(4,4).
~11(3+0).
-E(10:4).

+FIN.

+_INES(BE.DE.ACE.AR.AD.CR.CIV .

+ES (Al==AL) .
+ES (EC=DC) .

+GOAL .
-ES (BE=DE) .

LS
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~SORCHA ("FRORLEM 13 NEVINS,27).
+DIAGRAM.

-N{0y2).
-Q(2,2).
-R(3,2).
-1 (46:2) .
-A(3s8).
~B(0+8) .
~-C(2,0).
-F(1,4).
-6(346).

+FIN.
+LTNCS (AR.EN.APN.NQRD.EFQC.CRSA.SR.TA.CID .«

+RECTANGLE (NESK) .
+PARALLEL OGRAM (ARCID o

1G0AL.
-ES(PR={"0¥) «
A
&)
ds
P

L

N
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~SORCHA(“FROBLEM 14  NEVINS,4%).
+DIAGRAM.

=C(0+0).
-4(30,0).
-B(24,12).
-M(27:6).
-N(22,6).
~I12y6) .
~E8Y?) .

+FIN.
+LINES (REUC.CA. AME.ANE . INM. ATD .

+HIDFOINT KD BC) o
+MIDFOINT (E»RID .
+ES (RI=RA) .
+PR(DM.CA) .

+G0AL . B
~EA(EAD=CAL) .

Y
<

g
r
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Appendix 2. Solutions Given by GEOM for the Same Problem Collection

FROBLEM O GELGERNTERS S

AREy B0 Gy IMAy AEC y IF Ry MEF » CFR
Sl T D

T OF AC

NTOOF B

MoIE MIDFOINT OF Al TO - RE - PFROVED

FRGOF §
TOF-DOWN SEARCGH
SUFC s SRR TOENTITY
DF s B BY - MII ~ FOINT

SCDEFE o RBF FaRALLEL -~ OR - ANTIFARALLEL - SIDES

TRIANGLE LFC CONGRUENT TO TRIANGLE BFK AGA

BY - CONGRUENT -~ TRIANGLES

INT OF K
COF CA

AR FARALLEL TO EF RY TWO MIDFOINTS IN TRIANGLE AKC

AR DA TARASE

FROVET

RY - TRANSITIVITY - OF - PARALLELISH

M o -
E I8 MIDPOINT QF AC DATARAGE

THEREFORE & i MIDFOINT OF all BY RISECTION OF THIRI SIDE

- Al

THEREFORE L
A BY - MIDL - FOINT
el It
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FROLLER o COLDESTELN,

GIVEN LIKEDS: BE,DE:ALE aBsADCRGCD

nl=al GIVEM

BGC=1C GIVEN
READY

EC=DE T0 - RE - FROVED
FROCGF s

TOF=TOWN SEARCH:

Ca=CaA IDENTITY
ARk=Al GIVEN
EKC=uC GIVEN
THEREFORE: TRIANGLE CAR CONGRUENT TO TRIANGLE CAD 558
THEREFORE:
(CAR = (EAD BY - CONGRUENT - TRIANGLES
EA=EA IDENTITY
(EAR = (EAD FROVED
AB=AD GIVEN
THEREFORE: TRIANGLE EAR CONGRUENT TO TRIANGLE EAD SAS

THEREFURE
RE=[E BY - CONGRUENT - TRIANGLES
QQE'L..
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PROBLENM 13 NEVING s 2
GIVEN LINER! ARYENyAFNyNQRISBFACsCRSA SEy DA CI
GIVEN RECTANGLE: NESR

GIVEN FARALLELOGRAM: ARBCD
READY

FR=FQ T -~ RE - FROVED

FROOF
BOTTOM-U SEARCH FOR BC-AD
CR=AN SIDES -~ OF -~ GIVEN -~ PARALLELOGRAM
Ba=Dc SINES ~ OF = GIVEN - PARALILELOGRAM
AC=0CA IDENTITY
THEREFORE? TRIANGLE CRA CONGRUENT TO TRIANGLE oaDC 565
LURE = ADR SUPPLEMENTARY —- ANGLES:
Ch=@ml SINES -~ OF ~ GIVEN - FARALLELOGRAM
80 = RAD CONGRUENT - TRIANGLES
THEREFORE D TRIANGLE CLhS CONGRUENT TO TRIANGLE ADR AhA
RATTOM-UF SEARCH FOR AR-CD
CARS = CDR SUFFLEMENTARY - ANGLES
Y SINES -~ OF ~ GIVEN - FARALLELOGRAM
CHAR = IRCD SUPFLEMENTARY - ANGLES
THEREFORE: TRIANGLE ARS CONGRUENT TO TRIANGLE COR ABA
BOTTOM-UP SEARCH FOR BS-NFR
BOTTOM-UPF SEARCH FUOR EBN-RS
TOP-DOWN SEARCHS
AR=CG CONGRUENT ~ TRIANGLES
“ARN = CUHE TRANSITIVITY
FiN=SR SIDES ~ OF -~ GIVEN -~ RECTANGLE

THEREFORE: TRIANGLE ARN CONGRUENT TO TRIANGLE C8H aA85
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THEREF ORE :
<PAC = <

<FPAC = <PCA

THEREFORE ¢
AF=CF

AS=CR

“ASE = =CRN

SR=RN

HELDER COELHO AND LUIS MONIZ PEREIRA

EY - CONGRUENT - TRIANGLES

FROVED

OFFOS - SIDES - I808

CONGRUENT - TRIANGLES

TRANSITIVITY

SIDES - OF - GIVEN -~ RECTANGLE

THEREFORE? TRIANGLE ASE CONGRUENT TO TRIANGLE CRN 5A5

THEREFORE$
Ra=NC

R =NE
AL=CA
CH=AN

THEREFORE D THIANGLE BaAC

THE i
CR=mi

(MR =T\
Bid=NR

NC=BA

RY - CONGRUENT - TRIANGLES
FROVED
JDENTITY

CONGRUENT ~ TRIANGLES

CONGRUENT TO TRIANGLE NCA 856

RY — CONGRUENT - TRIANGLES
FROVET
INENTITY

CONGRUENT =~ TRIANGLES

THEREFORE D TRIANGLE CREN CONGRUENT T0O TRIANGLE ANE 5586

THEREFQ
“FERN -

NI

RN = PN

SENG = ADN

SFAN = TR

EY - CONGRUENT -~ TRIANGLES

FROVET

OFFOS - SInEs - 1808

TRANSTTIVITY

FakalLEL - OR - aMTIEARSLLEL ~ SIRES



GEOMETRY THEOREM PROVING WITH PROLOG 377

THEREF
ZPON

TRENGTTIVITY -~ OF - EQUALITY

SRR s NG

LEFTE - STuES -~ 1608

PQ=FN FROVED
FR=FN FROVET

THEREFORE

TRANSTITIVITY - OF ~ EQUALITY
FeELO,
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FROBLEM 14 NEVINS» 4
GIVEN LINES?
GIVEN DI MIDFOINT OF RC
GIVEN E MIDFQINT OF ERD

El=Ré&

GIVEN ItM PARALLEL TO CaA

REAUY

SEAL = CAD

FROOF ?

TOF-LJWN BEARCH:

MINNAL

I I8 MIDFOINT OF BC
Is THE

TRIANGE

T OEOINT
RAC

THEREFORE i
InN
THEREFORE
RBM=M

BA= Rl
MoOIS MIDFOINT OF
E I8 MIGFOINT OF

Bé
1534

THEREF GRE §
MEsEE

MR=EE
AR

THEREFORE?
MA=ET!

RA=RI

REILIC y CAy AME » ANE s IINM » AL

GIVEN

T BE - FROVET

TaTARAGE

OF BAOBY BISECTION OF THIKD

- MID - FOINT

FalVis - OF

FROVET

GILVERN

DIFFERENGE - OF — SEGMENTS

HELDER COELHO AND LUIS MONIZ PEREIRA
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THEREFORE ¢
“HMAll = <EDA BAKE - ANGLES - IH50%

MA=ET FROWVET
“MALD = <CEDA R COVETD
AD=TA TIENTITY
THEREFURE ; TRIANGLE MAD CONGRUENT TO TRIANGLE EDA ST

THEREFORE
DM=AkE RY -~ CONGRUENT - TRIANGLES

MA=ED TRANSTTIVITY

“ANM = <ONE VERTICAL - OFFOSITE - ANGLES

“NMA = <NED CONGRUENT - TRIANGLES
THEREFORE: TRIANGLE MAN CONGRUENT TO TRIANGLE EIN SA0

THEREFORE :
NM=NE RY - CONGRUENT -~ TRIANGLES

NH=NE PROVET
DH=AE FROVED

THEREFORE :
MI=NA DIFFERENCE - 0F - SEGMENTS

NI=NG FROVET

THEREFORE :
NS o=

BALBE - AN ES - TROE

AT = INDA FaRkalLEL - QR - AMTIPARALLEL -~ SIS

AN = NDA FROVET

THEREFORE ¢
SEADL = <CAD TRANSITIVITY — OF - EQUALITY
QeE D,
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